{"title":"克什米尔喜马拉雅地区受威胁药用植物对预期气候变化的差异响应","authors":"Javaid M. Dad, I. Rashid","doi":"10.1017/S0376892922000030","DOIUrl":null,"url":null,"abstract":"Summary As natural and anthropogenic forcings impel anticipated climate change, their effects on biodiversity and environmental sustainability are evident. A fundamental question that is often overlooked is: which changes in climate will cause the redistribution or extinction of threatened species? Here, we mapped and modelled the current and future geographical distributions of the four threatened medicinal plants – Aconitum heterophyllum Wall. ex Royle, Fritillaria cirrhosa D.Don, Meconopsis aculeata Royle and Rheum webbianum Royle – in Kashmir Himalaya using maximum entropy (MaxEnt) modelling. Species occurrence records were collated from detailed field studies carried out between the years 2010 and 2020. Four general circulation models for Representative Concentration Pathway (RCP) 4.5 and RCP8.5 climate change scenarios were chosen for future range changes over periods around 2050 (average for 2041–2060) and 2070 (average of 2061–2080). Notable differences existed between species in their responses to predictive environmental variables of temperature and precipitation. Increase in the most suitable habitat, except for A. heterophyllum and R. webbianum, were evident across Himalayan Mountain regions, while the Pir Panjal mountain region exhibited a decrease for all four species under future climate change scenarios. This study exemplifies the idiosyncratic response of narrow-range plants to expected future climate change and highlights conservation implications.","PeriodicalId":50517,"journal":{"name":"Environmental Conservation","volume":"49 1","pages":"33 - 41"},"PeriodicalIF":2.2000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Differential responses of Kashmir Himalayan threatened medicinal plants to anticipated climate change\",\"authors\":\"Javaid M. Dad, I. Rashid\",\"doi\":\"10.1017/S0376892922000030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary As natural and anthropogenic forcings impel anticipated climate change, their effects on biodiversity and environmental sustainability are evident. A fundamental question that is often overlooked is: which changes in climate will cause the redistribution or extinction of threatened species? Here, we mapped and modelled the current and future geographical distributions of the four threatened medicinal plants – Aconitum heterophyllum Wall. ex Royle, Fritillaria cirrhosa D.Don, Meconopsis aculeata Royle and Rheum webbianum Royle – in Kashmir Himalaya using maximum entropy (MaxEnt) modelling. Species occurrence records were collated from detailed field studies carried out between the years 2010 and 2020. Four general circulation models for Representative Concentration Pathway (RCP) 4.5 and RCP8.5 climate change scenarios were chosen for future range changes over periods around 2050 (average for 2041–2060) and 2070 (average of 2061–2080). Notable differences existed between species in their responses to predictive environmental variables of temperature and precipitation. Increase in the most suitable habitat, except for A. heterophyllum and R. webbianum, were evident across Himalayan Mountain regions, while the Pir Panjal mountain region exhibited a decrease for all four species under future climate change scenarios. This study exemplifies the idiosyncratic response of narrow-range plants to expected future climate change and highlights conservation implications.\",\"PeriodicalId\":50517,\"journal\":{\"name\":\"Environmental Conservation\",\"volume\":\"49 1\",\"pages\":\"33 - 41\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1017/S0376892922000030\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/S0376892922000030","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Differential responses of Kashmir Himalayan threatened medicinal plants to anticipated climate change
Summary As natural and anthropogenic forcings impel anticipated climate change, their effects on biodiversity and environmental sustainability are evident. A fundamental question that is often overlooked is: which changes in climate will cause the redistribution or extinction of threatened species? Here, we mapped and modelled the current and future geographical distributions of the four threatened medicinal plants – Aconitum heterophyllum Wall. ex Royle, Fritillaria cirrhosa D.Don, Meconopsis aculeata Royle and Rheum webbianum Royle – in Kashmir Himalaya using maximum entropy (MaxEnt) modelling. Species occurrence records were collated from detailed field studies carried out between the years 2010 and 2020. Four general circulation models for Representative Concentration Pathway (RCP) 4.5 and RCP8.5 climate change scenarios were chosen for future range changes over periods around 2050 (average for 2041–2060) and 2070 (average of 2061–2080). Notable differences existed between species in their responses to predictive environmental variables of temperature and precipitation. Increase in the most suitable habitat, except for A. heterophyllum and R. webbianum, were evident across Himalayan Mountain regions, while the Pir Panjal mountain region exhibited a decrease for all four species under future climate change scenarios. This study exemplifies the idiosyncratic response of narrow-range plants to expected future climate change and highlights conservation implications.
期刊介绍:
Environmental Conservation is one of the longest-standing, most highly-cited of the interdisciplinary environmental science journals. It includes research papers, reports, comments, subject reviews, and book reviews addressing environmental policy, practice, and natural and social science of environmental concern at the global level, informed by rigorous local level case studies. The journal"s scope is very broad, including issues in human institutions, ecosystem change, resource utilisation, terrestrial biomes, aquatic systems, and coastal and land use management. Environmental Conservation is essential reading for all environmentalists, managers, consultants, agency workers and scientists wishing to keep abreast of current developments in environmental science.