{"title":"Jarratt法与其它四阶解方程法的球比较","authors":"I. Argyros, S. George","doi":"10.4067/S0719-06462018000300065","DOIUrl":null,"url":null,"abstract":"The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt’s fourth order method and another method of the same convergence order.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4067/S0719-06462018000300065","citationCount":"0","resultStr":"{\"title\":\"Ball comparison between Jarratt’s and other fourth order method for solving equations\",\"authors\":\"I. Argyros, S. George\",\"doi\":\"10.4067/S0719-06462018000300065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt’s fourth order method and another method of the same convergence order.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4067/S0719-06462018000300065\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/S0719-06462018000300065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/S0719-06462018000300065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ball comparison between Jarratt’s and other fourth order method for solving equations
The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt’s fourth order method and another method of the same convergence order.