Kamil Kropáč, Z. Dolníček, P. Uher, D. Buriánek, Amina Safai, Tomáš Urubek
{"title":"氧化锆-铌钛酸盐和相关富含Zr、Nb、REE的副矿物:隐色特申岩热液叠加产物(西里西亚单元,外西喀尔巴阡山脉,捷克共和国)","authors":"Kamil Kropáč, Z. Dolníček, P. Uher, D. Buriánek, Amina Safai, Tomáš Urubek","doi":"10.31577/geolcarp.71.4.4","DOIUrl":null,"url":null,"abstract":"Sills of hydrothermally altered alkaline magmatic rock (teschenite) of Lower Cretaceous age at the Čerťák and Řepiště sites in the Silesian Unit (Flysch Belt of the Outer Western Carpathians, Czech Republic) host leucocratic dykes and nests which contain accessory minerals enriched in Zr, Nb and REE: Zr-, Nb-rich titanite, zircon, gittinsite, pyrochlore, monazite, REE-rich apatite, epidote, and vesuvianite. Titanite forms wedge-shaped crystals or irregular aggregates enclosed in the analcime groundmass or overgrowths on Zr-rich ferropargasite and taramite or Zr-rich aegirine–augite to aegirine. Titanite crystals show oscillatory or irregular patchy to sector zoning and contain up to 17.7 wt. % ZrO2 and 19.6 wt. % Nb2O5, and ≤1.1 wt. % REE2O3. High-field-strength elements (HFSE) are incorporated into the structure of the studied titanite predominantly by substitutions: (i) [6]Ti4+ ↔ [6]Zr4+; (ii) [6]Ti4+ + [6]Al3+ ↔ [6]Zr4+ + [6]Fe3+; and (iii) [6]2Ti4+ ↔ [6]Nb5+ + [6](Al, Fe)3+. Magmatic fractional crystallization, high-temperature hydrothermal autometasomatic overprint and low-temperature hydrothermal alterations resulted in the formation of the HFSE-rich mineral assemblages within the leucocratic teschenites. Autometamorphic processes caused by high-temperature hypersaline aqueous solutions (salinity ~50 wt. %, ~390–510 °C), which were released from the HFSE-enriched residual melt, played a major role in the crystallization of Zr-, Nb-, and REE-rich minerals. The mobilization of HFSE could have occurred either by their sequestration into a fluid phase exsolved from the crystallizing melt or by superimposed alteration processes. The distinctive positive Eu anomaly (EuCN/Eu* = 1.85) of leucocratic dykes infers possible mixing of Eu2+-bearing magmatic fluids with more oxidized fluids.","PeriodicalId":12545,"journal":{"name":"Geologica Carpathica","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Zirconian–niobian titanite and associated Zr-, Nb-, REE-rich accessory minerals: Products of hydrothermal overprint of leucocratic teschenites (Silesian Unit, Outer Western Carpathians, Czech Republic)\",\"authors\":\"Kamil Kropáč, Z. Dolníček, P. Uher, D. Buriánek, Amina Safai, Tomáš Urubek\",\"doi\":\"10.31577/geolcarp.71.4.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sills of hydrothermally altered alkaline magmatic rock (teschenite) of Lower Cretaceous age at the Čerťák and Řepiště sites in the Silesian Unit (Flysch Belt of the Outer Western Carpathians, Czech Republic) host leucocratic dykes and nests which contain accessory minerals enriched in Zr, Nb and REE: Zr-, Nb-rich titanite, zircon, gittinsite, pyrochlore, monazite, REE-rich apatite, epidote, and vesuvianite. Titanite forms wedge-shaped crystals or irregular aggregates enclosed in the analcime groundmass or overgrowths on Zr-rich ferropargasite and taramite or Zr-rich aegirine–augite to aegirine. Titanite crystals show oscillatory or irregular patchy to sector zoning and contain up to 17.7 wt. % ZrO2 and 19.6 wt. % Nb2O5, and ≤1.1 wt. % REE2O3. High-field-strength elements (HFSE) are incorporated into the structure of the studied titanite predominantly by substitutions: (i) [6]Ti4+ ↔ [6]Zr4+; (ii) [6]Ti4+ + [6]Al3+ ↔ [6]Zr4+ + [6]Fe3+; and (iii) [6]2Ti4+ ↔ [6]Nb5+ + [6](Al, Fe)3+. Magmatic fractional crystallization, high-temperature hydrothermal autometasomatic overprint and low-temperature hydrothermal alterations resulted in the formation of the HFSE-rich mineral assemblages within the leucocratic teschenites. Autometamorphic processes caused by high-temperature hypersaline aqueous solutions (salinity ~50 wt. %, ~390–510 °C), which were released from the HFSE-enriched residual melt, played a major role in the crystallization of Zr-, Nb-, and REE-rich minerals. The mobilization of HFSE could have occurred either by their sequestration into a fluid phase exsolved from the crystallizing melt or by superimposed alteration processes. The distinctive positive Eu anomaly (EuCN/Eu* = 1.85) of leucocratic dykes infers possible mixing of Eu2+-bearing magmatic fluids with more oxidized fluids.\",\"PeriodicalId\":12545,\"journal\":{\"name\":\"Geologica Carpathica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologica Carpathica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.31577/geolcarp.71.4.4\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologica Carpathica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.31577/geolcarp.71.4.4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Zirconian–niobian titanite and associated Zr-, Nb-, REE-rich accessory minerals: Products of hydrothermal overprint of leucocratic teschenites (Silesian Unit, Outer Western Carpathians, Czech Republic)
Sills of hydrothermally altered alkaline magmatic rock (teschenite) of Lower Cretaceous age at the Čerťák and Řepiště sites in the Silesian Unit (Flysch Belt of the Outer Western Carpathians, Czech Republic) host leucocratic dykes and nests which contain accessory minerals enriched in Zr, Nb and REE: Zr-, Nb-rich titanite, zircon, gittinsite, pyrochlore, monazite, REE-rich apatite, epidote, and vesuvianite. Titanite forms wedge-shaped crystals or irregular aggregates enclosed in the analcime groundmass or overgrowths on Zr-rich ferropargasite and taramite or Zr-rich aegirine–augite to aegirine. Titanite crystals show oscillatory or irregular patchy to sector zoning and contain up to 17.7 wt. % ZrO2 and 19.6 wt. % Nb2O5, and ≤1.1 wt. % REE2O3. High-field-strength elements (HFSE) are incorporated into the structure of the studied titanite predominantly by substitutions: (i) [6]Ti4+ ↔ [6]Zr4+; (ii) [6]Ti4+ + [6]Al3+ ↔ [6]Zr4+ + [6]Fe3+; and (iii) [6]2Ti4+ ↔ [6]Nb5+ + [6](Al, Fe)3+. Magmatic fractional crystallization, high-temperature hydrothermal autometasomatic overprint and low-temperature hydrothermal alterations resulted in the formation of the HFSE-rich mineral assemblages within the leucocratic teschenites. Autometamorphic processes caused by high-temperature hypersaline aqueous solutions (salinity ~50 wt. %, ~390–510 °C), which were released from the HFSE-enriched residual melt, played a major role in the crystallization of Zr-, Nb-, and REE-rich minerals. The mobilization of HFSE could have occurred either by their sequestration into a fluid phase exsolved from the crystallizing melt or by superimposed alteration processes. The distinctive positive Eu anomaly (EuCN/Eu* = 1.85) of leucocratic dykes infers possible mixing of Eu2+-bearing magmatic fluids with more oxidized fluids.
期刊介绍:
GEOLOGICA CARPATHICA covers a wide spectrum of geological disciplines including geodynamics, tectonics and structural geology, volcanology, stratigraphy, geochronology and isotopic geology, karstology, geochemistry, mineralogy, petrology, lithology and sedimentology, paleogeography, paleoecology, paleobiology and paleontology, paleomagnetism, magnetostratigraphy and other branches of applied geophysics, economic and environmental geology, experimental and theoretical geoscientific studies. Geologica Carpathica , with its 60 year old tradition, presents high-quality research papers devoted to all aspects not only of the Alpine-Carpathian-Balkanian geoscience but also with adjacent regions originated from the Mediterranean Tethys and its continental foreland. Geologica Carpathica is an Official Journal of the Carpathian-Balkan Geological Association.