随机场Ising和Potts模型的长程阶

IF 3.1 1区 数学 Q1 MATHEMATICS
Jian Ding, Zijie Zhuang
{"title":"随机场Ising和Potts模型的长程阶","authors":"Jian Ding,&nbsp;Zijie Zhuang","doi":"10.1002/cpa.22127","DOIUrl":null,"url":null,"abstract":"<p>We present a new and simple proof for the classic results of Imbrie (1985) and Bricmont–Kupiainen (1988) that for the random field Ising model in dimension three and above there is long range order at low temperatures with presence of weak disorder. With the same method, we obtain a couple of new results: (1) we prove that long range order exists for the random field Potts model at low temperatures with presence of weak disorder in dimension three and above; (2) we obtain a lower bound on the correlation length for the random field Ising model at low temperatures in dimension two (which matches the upper bound in Ding–Wirth (2020)). Our proof is based on an extension of the Peierls argument with inputs from Chalker (1983), Fisher–Fröhlich–Spencer (1984), Ding–Wirth (2020) and Talagrand's majorizing measure theory (1980s) (and in particular, our proof does not involve the renormalization group theory).</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"37-51"},"PeriodicalIF":3.1000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Long range order for random field Ising and Potts models\",\"authors\":\"Jian Ding,&nbsp;Zijie Zhuang\",\"doi\":\"10.1002/cpa.22127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a new and simple proof for the classic results of Imbrie (1985) and Bricmont–Kupiainen (1988) that for the random field Ising model in dimension three and above there is long range order at low temperatures with presence of weak disorder. With the same method, we obtain a couple of new results: (1) we prove that long range order exists for the random field Potts model at low temperatures with presence of weak disorder in dimension three and above; (2) we obtain a lower bound on the correlation length for the random field Ising model at low temperatures in dimension two (which matches the upper bound in Ding–Wirth (2020)). Our proof is based on an extension of the Peierls argument with inputs from Chalker (1983), Fisher–Fröhlich–Spencer (1984), Ding–Wirth (2020) and Talagrand's majorizing measure theory (1980s) (and in particular, our proof does not involve the renormalization group theory).</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 1\",\"pages\":\"37-51\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22127\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22127","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

对于Imbrie(1985)和Bricmont-Kupiainen(1988)的经典结果,我们提出了一个新的简单证明,即对于三维及以上的随机场Ising模型,在低温下存在弱无序的长距离有序。用同样的方法,我们得到了两个新的结果:(1)证明了随机场波茨模型在低温条件下存在三维及以上的弱无序;(2)我们得到了低温下随机场Ising模型在第2维的相关长度的下界(与Ding-Wirth(2020)中的上界相匹配)。我们的证明是基于对佩尔斯论证的扩展,其中包括Chalker(1983)、Fisher-Fr\ ohlich-Spencer(1984)、Ding-Wirth(2020)和Talagrand的多数测度理论(1980)的输入(特别是,我们的证明不涉及重整化群理论)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long range order for random field Ising and Potts models

We present a new and simple proof for the classic results of Imbrie (1985) and Bricmont–Kupiainen (1988) that for the random field Ising model in dimension three and above there is long range order at low temperatures with presence of weak disorder. With the same method, we obtain a couple of new results: (1) we prove that long range order exists for the random field Potts model at low temperatures with presence of weak disorder in dimension three and above; (2) we obtain a lower bound on the correlation length for the random field Ising model at low temperatures in dimension two (which matches the upper bound in Ding–Wirth (2020)). Our proof is based on an extension of the Peierls argument with inputs from Chalker (1983), Fisher–Fröhlich–Spencer (1984), Ding–Wirth (2020) and Talagrand's majorizing measure theory (1980s) (and in particular, our proof does not involve the renormalization group theory).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信