面向查询的抽象文本摘要的预训练变形域自适应

IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Md Tahmid Rahman Laskar, Enamul Hoque, J. Huang
{"title":"面向查询的抽象文本摘要的预训练变形域自适应","authors":"Md Tahmid Rahman Laskar, Enamul Hoque, J. Huang","doi":"10.1162/coli_a_00434","DOIUrl":null,"url":null,"abstract":"Abstract The Query-Focused Text Summarization (QFTS) task aims at building systems that generate the summary of the text document(s) based on the given query. A key challenge in addressing this task is the lack of large labeled data for training the summarization model. In this article, we address this challenge by exploring a series of domain adaptation techniques. Given the recent success of pre-trained transformer models in a wide range of natural language processing tasks, we utilize such models to generate abstractive summaries for the QFTS task for both single-document and multi-document scenarios. For domain adaptation, we apply a variety of techniques using pre-trained transformer-based summarization models including transfer learning, weakly supervised learning, and distant supervision. Extensive experiments on six datasets show that our proposed approach is very effective in generating abstractive summaries for the QFTS task while setting a new state-of-the-art result in several datasets across a set of automatic and human evaluation metrics.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"48 1","pages":"279-320"},"PeriodicalIF":3.7000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Domain Adaptation with Pre-trained Transformers for Query-Focused Abstractive Text Summarization\",\"authors\":\"Md Tahmid Rahman Laskar, Enamul Hoque, J. Huang\",\"doi\":\"10.1162/coli_a_00434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Query-Focused Text Summarization (QFTS) task aims at building systems that generate the summary of the text document(s) based on the given query. A key challenge in addressing this task is the lack of large labeled data for training the summarization model. In this article, we address this challenge by exploring a series of domain adaptation techniques. Given the recent success of pre-trained transformer models in a wide range of natural language processing tasks, we utilize such models to generate abstractive summaries for the QFTS task for both single-document and multi-document scenarios. For domain adaptation, we apply a variety of techniques using pre-trained transformer-based summarization models including transfer learning, weakly supervised learning, and distant supervision. Extensive experiments on six datasets show that our proposed approach is very effective in generating abstractive summaries for the QFTS task while setting a new state-of-the-art result in several datasets across a set of automatic and human evaluation metrics.\",\"PeriodicalId\":55229,\"journal\":{\"name\":\"Computational Linguistics\",\"volume\":\"48 1\",\"pages\":\"279-320\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Linguistics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/coli_a_00434\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00434","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 24

摘要

摘要以查询为中心的文本摘要(QFTS)任务旨在构建基于给定查询生成文本文档摘要的系统。解决这一任务的一个关键挑战是缺乏用于训练摘要模型的大标记数据。在本文中,我们通过探索一系列领域自适应技术来应对这一挑战。鉴于预训练的转换器模型最近在广泛的自然语言处理任务中取得了成功,我们利用这些模型为单文档和多文档场景的QFTS任务生成抽象摘要。对于领域自适应,我们使用预先训练的基于变换器的摘要模型应用了各种技术,包括迁移学习、弱监督学习和远程监督。在六个数据集上的大量实验表明,我们提出的方法在为QFTS任务生成抽象摘要方面非常有效,同时在一组自动和人工评估指标的几个数据集中设置了最先进的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain Adaptation with Pre-trained Transformers for Query-Focused Abstractive Text Summarization
Abstract The Query-Focused Text Summarization (QFTS) task aims at building systems that generate the summary of the text document(s) based on the given query. A key challenge in addressing this task is the lack of large labeled data for training the summarization model. In this article, we address this challenge by exploring a series of domain adaptation techniques. Given the recent success of pre-trained transformer models in a wide range of natural language processing tasks, we utilize such models to generate abstractive summaries for the QFTS task for both single-document and multi-document scenarios. For domain adaptation, we apply a variety of techniques using pre-trained transformer-based summarization models including transfer learning, weakly supervised learning, and distant supervision. Extensive experiments on six datasets show that our proposed approach is very effective in generating abstractive summaries for the QFTS task while setting a new state-of-the-art result in several datasets across a set of automatic and human evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Linguistics
Computational Linguistics 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信