精确$\infty$类别的稳定外壳

IF 0.8 4区 数学 Q2 MATHEMATICS
Jona Klemenc
{"title":"精确$\\infty$类别的稳定外壳","authors":"Jona Klemenc","doi":"10.4310/HHA.2022.v24.n2.a9","DOIUrl":null,"url":null,"abstract":"We construct a left adjoint $\\mathcal{H}^\\text{st}\\colon \\mathbf{Ex}_{\\infty} \\rightarrow \\mathbf{St}_{\\infty}$ to the inclusion $\\mathbf{St}_{\\infty} \\hookrightarrow \\mathbf{Ex}_{\\infty}$ of the $\\infty$-category of stable $\\infty$-categories into the $\\infty$-category of exact $\\infty$-categories, which we call the stable hull. For every exact $\\infty$-category $\\mathcal{E}$, the unit functor $\\mathcal{E} \\rightarrow \\mathcal{H}^\\text{st}(\\mathcal{E})$ is fully faithful and preserves and reflects exact sequences. This provides an $\\infty$-categorical variant of the Gabriel-Quillen embedding for ordinary exact categories. If $\\mathcal{E}$ is an ordinary exact category, the stable hull $\\mathcal{H}^\\text{st}(\\mathcal{E})$ is equivalent to the bounded derived $\\infty$-category of $\\mathcal{E}$.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The stable hull of an exact $\\\\infty$-category\",\"authors\":\"Jona Klemenc\",\"doi\":\"10.4310/HHA.2022.v24.n2.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a left adjoint $\\\\mathcal{H}^\\\\text{st}\\\\colon \\\\mathbf{Ex}_{\\\\infty} \\\\rightarrow \\\\mathbf{St}_{\\\\infty}$ to the inclusion $\\\\mathbf{St}_{\\\\infty} \\\\hookrightarrow \\\\mathbf{Ex}_{\\\\infty}$ of the $\\\\infty$-category of stable $\\\\infty$-categories into the $\\\\infty$-category of exact $\\\\infty$-categories, which we call the stable hull. For every exact $\\\\infty$-category $\\\\mathcal{E}$, the unit functor $\\\\mathcal{E} \\\\rightarrow \\\\mathcal{H}^\\\\text{st}(\\\\mathcal{E})$ is fully faithful and preserves and reflects exact sequences. This provides an $\\\\infty$-categorical variant of the Gabriel-Quillen embedding for ordinary exact categories. If $\\\\mathcal{E}$ is an ordinary exact category, the stable hull $\\\\mathcal{H}^\\\\text{st}(\\\\mathcal{E})$ is equivalent to the bounded derived $\\\\infty$-category of $\\\\mathcal{E}$.\",\"PeriodicalId\":55050,\"journal\":{\"name\":\"Homology Homotopy and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Homology Homotopy and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/HHA.2022.v24.n2.a9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/HHA.2022.v24.n2.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们构造了一个左伴随$\mathcal{H}^\text{st}\colon\mathbf{Ex}_{\infty}\rightarrow\mathbf{St}_{\infty}$到包含$\mathbf{St}_{\infty}\hookrightarrow\mathbf{Ex}_稳定$\infty$-类别的$\infity$-类别中的{\infty}$转换为精确$\infty$-类别,我们称之为稳定外壳。对于每一个精确的$\infty$-类别$\mathcal{E}$,单位函子$\mathcal{E}\rightarrow\mathcal{H}^\text{st}(\mathcal{E})$都是完全忠实的,并保留和反映精确的序列。这为普通精确类别提供了GabrielQuillen嵌入的$\infty$分类变体。如果$\mathcal{E}$是一个普通的精确范畴,则稳定外壳$\mathical{H}^\text{st}(\mathcal{E})$等价于$\mathcal{E}$的有界派生$\infty$-范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The stable hull of an exact $\infty$-category
We construct a left adjoint $\mathcal{H}^\text{st}\colon \mathbf{Ex}_{\infty} \rightarrow \mathbf{St}_{\infty}$ to the inclusion $\mathbf{St}_{\infty} \hookrightarrow \mathbf{Ex}_{\infty}$ of the $\infty$-category of stable $\infty$-categories into the $\infty$-category of exact $\infty$-categories, which we call the stable hull. For every exact $\infty$-category $\mathcal{E}$, the unit functor $\mathcal{E} \rightarrow \mathcal{H}^\text{st}(\mathcal{E})$ is fully faithful and preserves and reflects exact sequences. This provides an $\infty$-categorical variant of the Gabriel-Quillen embedding for ordinary exact categories. If $\mathcal{E}$ is an ordinary exact category, the stable hull $\mathcal{H}^\text{st}(\mathcal{E})$ is equivalent to the bounded derived $\infty$-category of $\mathcal{E}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信