使用异方差V3 SPSS宏的异方差教程

IF 1.3
A. Daryanto
{"title":"使用异方差V3 SPSS宏的异方差教程","authors":"A. Daryanto","doi":"10.20982/tqmp.16.5.v008","DOIUrl":null,"url":null,"abstract":"In this paper, I demonstrate how to assess the heteroskedasticity problems in cross-sectional studies that use linear regression models using my HeteroskedasticityV3 SPSS macro. I present two illustrative examples inspired from real research. This paper also provides the annotations of the macro outputs. In my classroom demonstrations, students were asked to analyse data sets used in this paper and discuss their regression results with and without implementing robust standard errors. The merits of checking for the presence of heteroskedasticity prior to adjusting robust standard errors were also discussed in class.","PeriodicalId":93055,"journal":{"name":"The quantitative methods for psychology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Tutorial on Heteroskedasticity using HeteroskedasticityV3 SPSS macro\",\"authors\":\"A. Daryanto\",\"doi\":\"10.20982/tqmp.16.5.v008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, I demonstrate how to assess the heteroskedasticity problems in cross-sectional studies that use linear regression models using my HeteroskedasticityV3 SPSS macro. I present two illustrative examples inspired from real research. This paper also provides the annotations of the macro outputs. In my classroom demonstrations, students were asked to analyse data sets used in this paper and discuss their regression results with and without implementing robust standard errors. The merits of checking for the presence of heteroskedasticity prior to adjusting robust standard errors were also discussed in class.\",\"PeriodicalId\":93055,\"journal\":{\"name\":\"The quantitative methods for psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quantitative methods for psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20982/tqmp.16.5.v008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quantitative methods for psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20982/tqmp.16.5.v008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我使用我的异方差V3 SPSS宏演示了如何评估使用线性回归模型的横断面研究中的异方差问题。我举了两个受实际研究启发的例证。本文还提供了宏输出的注释。在我的课堂演示中,学生们被要求分析本文中使用的数据集,并讨论他们在使用和不使用稳健标准误差的情况下的回归结果。课堂上还讨论了在调整鲁棒标准误差之前检查异方差存在的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tutorial on Heteroskedasticity using HeteroskedasticityV3 SPSS macro
In this paper, I demonstrate how to assess the heteroskedasticity problems in cross-sectional studies that use linear regression models using my HeteroskedasticityV3 SPSS macro. I present two illustrative examples inspired from real research. This paper also provides the annotations of the macro outputs. In my classroom demonstrations, students were asked to analyse data sets used in this paper and discuss their regression results with and without implementing robust standard errors. The merits of checking for the presence of heteroskedasticity prior to adjusting robust standard errors were also discussed in class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信