{"title":"基于模型预测控制的无人船自主避碰方法","authors":"Shengwei Xing, Hongwei Xie, Wenjun Zhang","doi":"10.1080/21642583.2021.1986752","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of autonomous collision avoidance of unmanned vessels in the case of multiple vessels encountering at sea, this paper proposes a method for collision avoidance of vessels in open water based on the Mathematical Model Group (MMG) vessel motion mathematical model. This method uses Model Predictive Control (MPC) model algorithm, and considers vessel maneuverability and the International Regulations for Preventing Collision at Sea, 1972 (COLREGs), and uses fuzzy mathematics to analyze the collision risk of vessels during navigation, and then constructs the evaluation function of the collision avoidance algorithm. The vessel's autonomous collision avoidance is realized. The simulation results show that the algorithm can solve the problem of autonomous vessel collision avoidance in the case of multi-vessel encounters in open water, which verifies the effectiveness of the algorithm.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":"10 1","pages":"255 - 263"},"PeriodicalIF":3.2000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A method for unmanned vessel autonomous collision avoidance based on model predictive control\",\"authors\":\"Shengwei Xing, Hongwei Xie, Wenjun Zhang\",\"doi\":\"10.1080/21642583.2021.1986752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of autonomous collision avoidance of unmanned vessels in the case of multiple vessels encountering at sea, this paper proposes a method for collision avoidance of vessels in open water based on the Mathematical Model Group (MMG) vessel motion mathematical model. This method uses Model Predictive Control (MPC) model algorithm, and considers vessel maneuverability and the International Regulations for Preventing Collision at Sea, 1972 (COLREGs), and uses fuzzy mathematics to analyze the collision risk of vessels during navigation, and then constructs the evaluation function of the collision avoidance algorithm. The vessel's autonomous collision avoidance is realized. The simulation results show that the algorithm can solve the problem of autonomous vessel collision avoidance in the case of multi-vessel encounters in open water, which verifies the effectiveness of the algorithm.\",\"PeriodicalId\":46282,\"journal\":{\"name\":\"Systems Science & Control Engineering\",\"volume\":\"10 1\",\"pages\":\"255 - 263\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2021.1986752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2021.1986752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A method for unmanned vessel autonomous collision avoidance based on model predictive control
Aiming at the problem of autonomous collision avoidance of unmanned vessels in the case of multiple vessels encountering at sea, this paper proposes a method for collision avoidance of vessels in open water based on the Mathematical Model Group (MMG) vessel motion mathematical model. This method uses Model Predictive Control (MPC) model algorithm, and considers vessel maneuverability and the International Regulations for Preventing Collision at Sea, 1972 (COLREGs), and uses fuzzy mathematics to analyze the collision risk of vessels during navigation, and then constructs the evaluation function of the collision avoidance algorithm. The vessel's autonomous collision avoidance is realized. The simulation results show that the algorithm can solve the problem of autonomous vessel collision avoidance in the case of multi-vessel encounters in open water, which verifies the effectiveness of the algorithm.
期刊介绍:
Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory