阈值图形套索调整潜在变量

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2022-11-10 DOI:10.1093/biomet/asac060
Minjie Wang, Genevera I. Allen
{"title":"阈值图形套索调整潜在变量","authors":"Minjie Wang, Genevera I. Allen","doi":"10.1093/biomet/asac060","DOIUrl":null,"url":null,"abstract":"Structural learning of Gaussian graphical models in the presence of latent variables has long been a challenging problem. Chandrasekaran et al. (2012) proposed a convex program to estimate a sparse graph plus low-rank term that adjusts for latent variables; but, this approach poses challenges from both a computational and statistical perspective. We propose an alternative and incredibly simple solution: apply a hard thresholding operator to existing graph selection methods. Conceptually simple and computationally attractive, we show that thresholding the graphical lasso is graph selection consistent in the presence of latent variables under a simpler minimum edge strength condition and at an improved statistical rate. We also extend results to thresholded neighbourhood selection and CLIME estimators as well. We show that our simple thresholded graph estimators enjoy stronger empirical results than existing approaches for the latent variable graphical model problem and conclude with a neuroscience case study to estimate functional neural connections.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Thresholded Graphical Lasso Adjusts for Latent Variables\",\"authors\":\"Minjie Wang, Genevera I. Allen\",\"doi\":\"10.1093/biomet/asac060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural learning of Gaussian graphical models in the presence of latent variables has long been a challenging problem. Chandrasekaran et al. (2012) proposed a convex program to estimate a sparse graph plus low-rank term that adjusts for latent variables; but, this approach poses challenges from both a computational and statistical perspective. We propose an alternative and incredibly simple solution: apply a hard thresholding operator to existing graph selection methods. Conceptually simple and computationally attractive, we show that thresholding the graphical lasso is graph selection consistent in the presence of latent variables under a simpler minimum edge strength condition and at an improved statistical rate. We also extend results to thresholded neighbourhood selection and CLIME estimators as well. We show that our simple thresholded graph estimators enjoy stronger empirical results than existing approaches for the latent variable graphical model problem and conclude with a neuroscience case study to estimate functional neural connections.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asac060\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asac060","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

存在潜在变量的高斯图模型的结构学习一直是一个具有挑战性的问题。Chandrasekaran等人(2012)提出了一种凸程序来估计稀疏图和低秩项,该项可以调整潜在变量;但是,这种方法从计算和统计的角度都提出了挑战。我们提出了另一种非常简单的解决方案:对现有的图选择方法应用硬阈值算子。概念上简单,计算上有吸引力,我们证明了阈值化的图形套是在潜在变量存在下的图形选择一致,在更简单的最小边缘强度条件下,以提高的统计率。我们还将结果扩展到阈值邻居选择和CLIME估计器。我们表明,我们的简单阈值图估计器在潜在变量图模型问题上比现有方法具有更强的经验结果,并以神经科学案例研究来估计功能性神经连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thresholded Graphical Lasso Adjusts for Latent Variables
Structural learning of Gaussian graphical models in the presence of latent variables has long been a challenging problem. Chandrasekaran et al. (2012) proposed a convex program to estimate a sparse graph plus low-rank term that adjusts for latent variables; but, this approach poses challenges from both a computational and statistical perspective. We propose an alternative and incredibly simple solution: apply a hard thresholding operator to existing graph selection methods. Conceptually simple and computationally attractive, we show that thresholding the graphical lasso is graph selection consistent in the presence of latent variables under a simpler minimum edge strength condition and at an improved statistical rate. We also extend results to thresholded neighbourhood selection and CLIME estimators as well. We show that our simple thresholded graph estimators enjoy stronger empirical results than existing approaches for the latent variable graphical model problem and conclude with a neuroscience case study to estimate functional neural connections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信