{"title":"预测SCC性能的多变量RBF网络性能评价","authors":"Atefeh Gholamzadeh Chitgar, J. Berenjian","doi":"10.22059/CEIJ.2020.288257.1611","DOIUrl":null,"url":null,"abstract":"In the present study, Radial Basis Function (RBF) neural networks were applied to forecast the compressive strength and elastic modulus of Self-Compacting Concrete (SCC). To construct the models, different experimental specimens of diverse kinds of SCC were gathered from the literature. The data used in the networks were classified into two different sets of input parameters. The results revealed that the proposed RBF models can accurately forecast the properties of SCCs with low test error. Furthermore, a comparison between models with two different sets of inputs proves that the selected parameters as input variables, straightly impress the precision of the networks, in the prediction of the intended outputs.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Evaluation of RBF Networks with Various Variables to Forecast the Properties of SCCs\",\"authors\":\"Atefeh Gholamzadeh Chitgar, J. Berenjian\",\"doi\":\"10.22059/CEIJ.2020.288257.1611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, Radial Basis Function (RBF) neural networks were applied to forecast the compressive strength and elastic modulus of Self-Compacting Concrete (SCC). To construct the models, different experimental specimens of diverse kinds of SCC were gathered from the literature. The data used in the networks were classified into two different sets of input parameters. The results revealed that the proposed RBF models can accurately forecast the properties of SCCs with low test error. Furthermore, a comparison between models with two different sets of inputs proves that the selected parameters as input variables, straightly impress the precision of the networks, in the prediction of the intended outputs.\",\"PeriodicalId\":43959,\"journal\":{\"name\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/CEIJ.2020.288257.1611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/CEIJ.2020.288257.1611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Performance Evaluation of RBF Networks with Various Variables to Forecast the Properties of SCCs
In the present study, Radial Basis Function (RBF) neural networks were applied to forecast the compressive strength and elastic modulus of Self-Compacting Concrete (SCC). To construct the models, different experimental specimens of diverse kinds of SCC were gathered from the literature. The data used in the networks were classified into two different sets of input parameters. The results revealed that the proposed RBF models can accurately forecast the properties of SCCs with low test error. Furthermore, a comparison between models with two different sets of inputs proves that the selected parameters as input variables, straightly impress the precision of the networks, in the prediction of the intended outputs.