A. Aabid, Jasim I. Humadi, Ghazwan S. Ahmed, A. Jarullah, Mustafa Abdulbari Ahmed, Waqas Abdullah
{"title":"新型氧化锌负载氧化铝纳米催化剂对轻质油脱硫工艺的改进","authors":"A. Aabid, Jasim I. Humadi, Ghazwan S. Ahmed, A. Jarullah, Mustafa Abdulbari Ahmed, Waqas Abdullah","doi":"10.14416/j.asep.2023.02.007","DOIUrl":null,"url":null,"abstract":"This work reports the removal of dibenzothiophene (DBT) via an oxidative desulfurization (ODS) process over Zn/Al2O3 catalyst utilizing H2O2 as an oxidizing agent. The influence of operating parameters, such as reaction temperature, time was investigated. Results clarified that recognizably high DBT elimination of 93.781% has been achieved within 80 min using 0.1 g (9% Zn/Al2O3) catalyst at 90 °C reaction temperature. It was observed that an overall ODS catalytic efficiency order of: 9% ZnO/γ-Al2O3> 6% ZnO/γ-Al2O3> 3% ZnO/γ-Al2O3. Discernment of the surface morphology and textural properties of prepared nano-catalysts were characterized utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), fourier transform infrared (FTIR) and BET surface area analysis, which assisted in evaluating the performance of the prepared nano-catalysts. Owing to its highly effective nature, operation at moderate conditions and cost-effectiveness, this work can be conceived as an efficient methodology for the ODS operation of fuel oils on an industrial scale.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enhancement of Desulfurization Process for Light Gas Oil Using New Zinc Oxide Loaded Over Alumina Nanocatalyst\",\"authors\":\"A. Aabid, Jasim I. Humadi, Ghazwan S. Ahmed, A. Jarullah, Mustafa Abdulbari Ahmed, Waqas Abdullah\",\"doi\":\"10.14416/j.asep.2023.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports the removal of dibenzothiophene (DBT) via an oxidative desulfurization (ODS) process over Zn/Al2O3 catalyst utilizing H2O2 as an oxidizing agent. The influence of operating parameters, such as reaction temperature, time was investigated. Results clarified that recognizably high DBT elimination of 93.781% has been achieved within 80 min using 0.1 g (9% Zn/Al2O3) catalyst at 90 °C reaction temperature. It was observed that an overall ODS catalytic efficiency order of: 9% ZnO/γ-Al2O3> 6% ZnO/γ-Al2O3> 3% ZnO/γ-Al2O3. Discernment of the surface morphology and textural properties of prepared nano-catalysts were characterized utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), fourier transform infrared (FTIR) and BET surface area analysis, which assisted in evaluating the performance of the prepared nano-catalysts. Owing to its highly effective nature, operation at moderate conditions and cost-effectiveness, this work can be conceived as an efficient methodology for the ODS operation of fuel oils on an industrial scale.\",\"PeriodicalId\":8097,\"journal\":{\"name\":\"Applied Science and Engineering Progress\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Science and Engineering Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14416/j.asep.2023.02.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2023.02.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Enhancement of Desulfurization Process for Light Gas Oil Using New Zinc Oxide Loaded Over Alumina Nanocatalyst
This work reports the removal of dibenzothiophene (DBT) via an oxidative desulfurization (ODS) process over Zn/Al2O3 catalyst utilizing H2O2 as an oxidizing agent. The influence of operating parameters, such as reaction temperature, time was investigated. Results clarified that recognizably high DBT elimination of 93.781% has been achieved within 80 min using 0.1 g (9% Zn/Al2O3) catalyst at 90 °C reaction temperature. It was observed that an overall ODS catalytic efficiency order of: 9% ZnO/γ-Al2O3> 6% ZnO/γ-Al2O3> 3% ZnO/γ-Al2O3. Discernment of the surface morphology and textural properties of prepared nano-catalysts were characterized utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), fourier transform infrared (FTIR) and BET surface area analysis, which assisted in evaluating the performance of the prepared nano-catalysts. Owing to its highly effective nature, operation at moderate conditions and cost-effectiveness, this work can be conceived as an efficient methodology for the ODS operation of fuel oils on an industrial scale.