多层板和薄膜传热计的一维解析和数值分析

IF 1.1 Q4 ENGINEERING, MECHANICAL
M. Baker, B. Rosic
{"title":"多层板和薄膜传热计的一维解析和数值分析","authors":"M. Baker, B. Rosic","doi":"10.33737/jgpps/151660","DOIUrl":null,"url":null,"abstract":"The impulse response method is widely used for heat transfer analysis in turbomachinery applications. Traditionally, the 1D method assumes a linear time invariant, isotropic, semi-infinite block and does not accurately model the behaviour of laminated materials. This paper evaluates the error introduced by the single layer assumption and outlines the required modifications for multilayer analysis.\n\nThe analytic solution for an N layer, semi-infinite laminate is presented. Adapted multilayer basis functions are derived for the impulse response method and used to evaluate the impact of uniform, isotropic assumptions. A numerical solution to the laminate problem is also presented. A penta-diagonal inversion algorithm, for a modified Crank-Nicolson scheme, is evaluated for fast stable implementation of multilayer simulation. The scheme shows comparable performance to the impulse response, whilst removing the requirement for linear time invariance.\n\nThe methods are demonstrated in the case of analysing a thin film gauge, used in laboratory analysis of heat transfer in a turbine nozzle guide vane. Thin film gauge manufacturing techniques have advanced significantly in recent years. Advanced multilayer constructions are now used however, post-processing commonly relies on outdated single layer methods. This paper provides a universal methodology, required to analyse modern-day multilayer heat transfer measurements.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1D analytic and numerical analysis of multilayer laminates and thin film heat transfer gauges\",\"authors\":\"M. Baker, B. Rosic\",\"doi\":\"10.33737/jgpps/151660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impulse response method is widely used for heat transfer analysis in turbomachinery applications. Traditionally, the 1D method assumes a linear time invariant, isotropic, semi-infinite block and does not accurately model the behaviour of laminated materials. This paper evaluates the error introduced by the single layer assumption and outlines the required modifications for multilayer analysis.\\n\\nThe analytic solution for an N layer, semi-infinite laminate is presented. Adapted multilayer basis functions are derived for the impulse response method and used to evaluate the impact of uniform, isotropic assumptions. A numerical solution to the laminate problem is also presented. A penta-diagonal inversion algorithm, for a modified Crank-Nicolson scheme, is evaluated for fast stable implementation of multilayer simulation. The scheme shows comparable performance to the impulse response, whilst removing the requirement for linear time invariance.\\n\\nThe methods are demonstrated in the case of analysing a thin film gauge, used in laboratory analysis of heat transfer in a turbine nozzle guide vane. Thin film gauge manufacturing techniques have advanced significantly in recent years. Advanced multilayer constructions are now used however, post-processing commonly relies on outdated single layer methods. This paper provides a universal methodology, required to analyse modern-day multilayer heat transfer measurements.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/jgpps/151660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/151660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

脉冲响应法广泛用于涡轮机械应用中的传热分析。传统上,1D方法假设线性时不变、各向同性、半无限块,并且不能准确地对层压材料的行为建模。本文评估了单层假设引入的误差,并概述了多层分析所需的修改。给出了N层半无限层压板的解析解。推导了脉冲响应方法的自适应多层基函数,并用于评估均匀各向同性假设的影响。文中还给出了层压板问题的数值解。为了快速稳定地实现多层模拟,对一种改进的Crank-Nicolson格式的五对角反演算法进行了评估。该方案显示出与脉冲响应相当的性能,同时消除了对线性时间不变性的要求。这些方法在分析薄膜测量仪的情况下进行了演示,该测量仪用于涡轮机喷嘴导叶中的传热的实验室分析。近年来,薄膜厚度计的制造技术取得了显著进步。现在使用先进的多层结构,然而,后处理通常依赖于过时的单层方法。本文提供了一种分析现代多层传热测量所需的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
1D analytic and numerical analysis of multilayer laminates and thin film heat transfer gauges
The impulse response method is widely used for heat transfer analysis in turbomachinery applications. Traditionally, the 1D method assumes a linear time invariant, isotropic, semi-infinite block and does not accurately model the behaviour of laminated materials. This paper evaluates the error introduced by the single layer assumption and outlines the required modifications for multilayer analysis. The analytic solution for an N layer, semi-infinite laminate is presented. Adapted multilayer basis functions are derived for the impulse response method and used to evaluate the impact of uniform, isotropic assumptions. A numerical solution to the laminate problem is also presented. A penta-diagonal inversion algorithm, for a modified Crank-Nicolson scheme, is evaluated for fast stable implementation of multilayer simulation. The scheme shows comparable performance to the impulse response, whilst removing the requirement for linear time invariance. The methods are demonstrated in the case of analysing a thin film gauge, used in laboratory analysis of heat transfer in a turbine nozzle guide vane. Thin film gauge manufacturing techniques have advanced significantly in recent years. Advanced multilayer constructions are now used however, post-processing commonly relies on outdated single layer methods. This paper provides a universal methodology, required to analyse modern-day multilayer heat transfer measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信