安全集成传感和通信

Onur Günlü;Matthieu R. Bloch;Rafael F. Schaefer;Aylin Yener
{"title":"安全集成传感和通信","authors":"Onur Günlü;Matthieu R. Bloch;Rafael F. Schaefer;Aylin Yener","doi":"10.1109/JSAIT.2023.3275048","DOIUrl":null,"url":null,"abstract":"This work considers the problem of mitigating information leakage between communication and sensing in systems jointly performing both operations. Specifically, a discrete memoryless state-dependent broadcast channel model is studied in which (i) the presence of feedback enables a transmitter to convey information, while simultaneously performing channel state estimation; (ii) one of the receivers is treated as an eavesdropper whose state should be estimated but which should remain oblivious to part of the transmitted information. The model abstracts the challenges behind security for joint communication and sensing if one views the channel state as a key attribute, e.g., location. For independent and identically distributed states, perfect output feedback, and when part of the transmitted message should be kept secret, a partial characterization of the secrecy-distortion region is developed. The characterization is exact when the broadcast channel is either physically-degraded or reversely-physically-degraded. The partial characterization is also extended to the situation in which the entire transmitted message should be kept secret. The benefits of a joint approach compared to separation-based secure communication and state-sensing methods are illustrated with binary joint communication and sensing models.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"40-53"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Secure Integrated Sensing and Communication\",\"authors\":\"Onur Günlü;Matthieu R. Bloch;Rafael F. Schaefer;Aylin Yener\",\"doi\":\"10.1109/JSAIT.2023.3275048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work considers the problem of mitigating information leakage between communication and sensing in systems jointly performing both operations. Specifically, a discrete memoryless state-dependent broadcast channel model is studied in which (i) the presence of feedback enables a transmitter to convey information, while simultaneously performing channel state estimation; (ii) one of the receivers is treated as an eavesdropper whose state should be estimated but which should remain oblivious to part of the transmitted information. The model abstracts the challenges behind security for joint communication and sensing if one views the channel state as a key attribute, e.g., location. For independent and identically distributed states, perfect output feedback, and when part of the transmitted message should be kept secret, a partial characterization of the secrecy-distortion region is developed. The characterization is exact when the broadcast channel is either physically-degraded or reversely-physically-degraded. The partial characterization is also extended to the situation in which the entire transmitted message should be kept secret. The benefits of a joint approach compared to separation-based secure communication and state-sensing methods are illustrated with binary joint communication and sensing models.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"4 \",\"pages\":\"40-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10122612/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10122612/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

这项工作考虑了在联合执行通信和传感两种操作的系统中减轻信息泄漏的问题。具体来说,研究了一个离散无记忆状态相关的广播信道模型,其中(i)反馈的存在使发射机能够在传输信息的同时进行信道状态估计;(ii)将其中一个接收者视为窃听者,其状态应被估计,但应对传输的部分信息保持不知情。如果将信道状态视为关键属性(例如位置),则该模型抽象了联合通信和传感安全背后的挑战。在独立同分布状态下,在输出反馈完美的情况下,在需要对部分传输信息保密的情况下,给出了保密失真区域的部分表征。当广播信道是物理降级或反向物理降级时,该特性是准确的。部分表征也扩展到整个传输消息应保密的情况。与基于分离的安全通信和状态感知方法相比,联合方法的优点用二进制联合通信和感知模型来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure Integrated Sensing and Communication
This work considers the problem of mitigating information leakage between communication and sensing in systems jointly performing both operations. Specifically, a discrete memoryless state-dependent broadcast channel model is studied in which (i) the presence of feedback enables a transmitter to convey information, while simultaneously performing channel state estimation; (ii) one of the receivers is treated as an eavesdropper whose state should be estimated but which should remain oblivious to part of the transmitted information. The model abstracts the challenges behind security for joint communication and sensing if one views the channel state as a key attribute, e.g., location. For independent and identically distributed states, perfect output feedback, and when part of the transmitted message should be kept secret, a partial characterization of the secrecy-distortion region is developed. The characterization is exact when the broadcast channel is either physically-degraded or reversely-physically-degraded. The partial characterization is also extended to the situation in which the entire transmitted message should be kept secret. The benefits of a joint approach compared to separation-based secure communication and state-sensing methods are illustrated with binary joint communication and sensing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信