弱强星门格尔空间

IF 0.5 Q3 MATHEMATICS
G. Kumar, B. Tyagi
{"title":"弱强星门格尔空间","authors":"G. Kumar, B. Tyagi","doi":"10.4067/s0719-06462021000200287","DOIUrl":null,"url":null,"abstract":"A space \\(X\\) is called weakly strongly star-Menger space if for each sequence (\\(\\mathcal{U}_{n} : n \\in \\omega\\)) of open covers of \\(X\\), there is a sequence \\((F_n : n\\in\\omega)\\) of finite subsets of \\(X\\) such that \\(\\overline{\\bigcup_{n\\in\\omega} St(F_n, \\mathcal{U}_n)}\\) is \\(X\\). In this paper, we investigate the relationship of weakly strongly star-Menger spaces with other related spaces. It is shown that a Hausdorff paracompact weakly star Menger \\(P\\)-space is star-Menger. We also study the images and preimages of weakly strongly star-Menger spaces under various type of maps.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weakly strongly star-Menger spaces\",\"authors\":\"G. Kumar, B. Tyagi\",\"doi\":\"10.4067/s0719-06462021000200287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A space \\\\(X\\\\) is called weakly strongly star-Menger space if for each sequence (\\\\(\\\\mathcal{U}_{n} : n \\\\in \\\\omega\\\\)) of open covers of \\\\(X\\\\), there is a sequence \\\\((F_n : n\\\\in\\\\omega)\\\\) of finite subsets of \\\\(X\\\\) such that \\\\(\\\\overline{\\\\bigcup_{n\\\\in\\\\omega} St(F_n, \\\\mathcal{U}_n)}\\\\) is \\\\(X\\\\). In this paper, we investigate the relationship of weakly strongly star-Menger spaces with other related spaces. It is shown that a Hausdorff paracompact weakly star Menger \\\\(P\\\\)-space is star-Menger. We also study the images and preimages of weakly strongly star-Menger spaces under various type of maps.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/s0719-06462021000200287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462021000200287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

空间\(X\)称为弱强星Menger空间,如果对于每个序列(\(\mathcal{U}_{n} :n\in\omega\))的开覆盖,存在\(X\)的有限子集的序列\((F_n:n\in\omega)\),使得\(\overline{\bigcup_{n\in\omega}St(F_n,\mathcal{U}_n)}\)是\(X\)。本文研究了弱强星Menger空间与其它相关空间的关系。证明了一个Hausdorff仿紧弱星Menger(P)-空间是星Menger。我们还研究了在各种类型的映射下,弱强恒星Menger空间的图像和前图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly strongly star-Menger spaces
A space \(X\) is called weakly strongly star-Menger space if for each sequence (\(\mathcal{U}_{n} : n \in \omega\)) of open covers of \(X\), there is a sequence \((F_n : n\in\omega)\) of finite subsets of \(X\) such that \(\overline{\bigcup_{n\in\omega} St(F_n, \mathcal{U}_n)}\) is \(X\). In this paper, we investigate the relationship of weakly strongly star-Menger spaces with other related spaces. It is shown that a Hausdorff paracompact weakly star Menger \(P\)-space is star-Menger. We also study the images and preimages of weakly strongly star-Menger spaces under various type of maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信