{"title":"多参数周期Dirichlet问题的奇异性","authors":"M. D. Riva, Paolo Luzzini, P. Musolino","doi":"10.3233/asy-231831","DOIUrl":null,"url":null,"abstract":"We consider a Dirichlet problem for the Poisson equation in a periodically perforated domain. The geometry of the domain is controlled by two parameters: a real number ϵ > 0, proportional to the radius of the holes, and a map ϕ, which models the shape of the holes. So, if g denotes the Dirichlet boundary datum and f the Poisson datum, we have a solution for each quadruple ( ϵ , ϕ , g , f ). Our aim is to study how the solution depends on ( ϵ , ϕ , g , f ), especially when ϵ is very small and the holes narrow to points. In contrast with previous works, we do not introduce the assumption that f has zero integral on the fundamental periodicity cell. This brings in a certain singular behavior for ϵ close to 0. We show that, when the dimension n of the ambient space is greater than or equal to 3, a suitable restriction of the solution can be represented with an analytic map of the quadruple ( ϵ , ϕ , g , f ) multiplied by the factor 1 / ϵ n − 2 . In case of dimension n = 2, we have to add log ϵ times the integral of f / 2 π.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular behavior for a multi-parameter periodic Dirichlet problem\",\"authors\":\"M. D. Riva, Paolo Luzzini, P. Musolino\",\"doi\":\"10.3233/asy-231831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Dirichlet problem for the Poisson equation in a periodically perforated domain. The geometry of the domain is controlled by two parameters: a real number ϵ > 0, proportional to the radius of the holes, and a map ϕ, which models the shape of the holes. So, if g denotes the Dirichlet boundary datum and f the Poisson datum, we have a solution for each quadruple ( ϵ , ϕ , g , f ). Our aim is to study how the solution depends on ( ϵ , ϕ , g , f ), especially when ϵ is very small and the holes narrow to points. In contrast with previous works, we do not introduce the assumption that f has zero integral on the fundamental periodicity cell. This brings in a certain singular behavior for ϵ close to 0. We show that, when the dimension n of the ambient space is greater than or equal to 3, a suitable restriction of the solution can be represented with an analytic map of the quadruple ( ϵ , ϕ , g , f ) multiplied by the factor 1 / ϵ n − 2 . In case of dimension n = 2, we have to add log ϵ times the integral of f / 2 π.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231831\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231831","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Singular behavior for a multi-parameter periodic Dirichlet problem
We consider a Dirichlet problem for the Poisson equation in a periodically perforated domain. The geometry of the domain is controlled by two parameters: a real number ϵ > 0, proportional to the radius of the holes, and a map ϕ, which models the shape of the holes. So, if g denotes the Dirichlet boundary datum and f the Poisson datum, we have a solution for each quadruple ( ϵ , ϕ , g , f ). Our aim is to study how the solution depends on ( ϵ , ϕ , g , f ), especially when ϵ is very small and the holes narrow to points. In contrast with previous works, we do not introduce the assumption that f has zero integral on the fundamental periodicity cell. This brings in a certain singular behavior for ϵ close to 0. We show that, when the dimension n of the ambient space is greater than or equal to 3, a suitable restriction of the solution can be represented with an analytic map of the quadruple ( ϵ , ϕ , g , f ) multiplied by the factor 1 / ϵ n − 2 . In case of dimension n = 2, we have to add log ϵ times the integral of f / 2 π.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.