多参数周期Dirichlet问题的奇异性

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
M. D. Riva, Paolo Luzzini, P. Musolino
{"title":"多参数周期Dirichlet问题的奇异性","authors":"M. D. Riva, Paolo Luzzini, P. Musolino","doi":"10.3233/asy-231831","DOIUrl":null,"url":null,"abstract":"We consider a Dirichlet problem for the Poisson equation in a periodically perforated domain. The geometry of the domain is controlled by two parameters: a real number ϵ > 0, proportional to the radius of the holes, and a map ϕ, which models the shape of the holes. So, if g denotes the Dirichlet boundary datum and f the Poisson datum, we have a solution for each quadruple ( ϵ , ϕ , g , f ). Our aim is to study how the solution depends on ( ϵ , ϕ , g , f ), especially when ϵ is very small and the holes narrow to points. In contrast with previous works, we do not introduce the assumption that f has zero integral on the fundamental periodicity cell. This brings in a certain singular behavior for ϵ close to 0. We show that, when the dimension n of the ambient space is greater than or equal to 3, a suitable restriction of the solution can be represented with an analytic map of the quadruple ( ϵ , ϕ , g , f ) multiplied by the factor 1 / ϵ n − 2 . In case of dimension n = 2, we have to add log ϵ times the integral of f / 2 π.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular behavior for a multi-parameter periodic Dirichlet problem\",\"authors\":\"M. D. Riva, Paolo Luzzini, P. Musolino\",\"doi\":\"10.3233/asy-231831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Dirichlet problem for the Poisson equation in a periodically perforated domain. The geometry of the domain is controlled by two parameters: a real number ϵ > 0, proportional to the radius of the holes, and a map ϕ, which models the shape of the holes. So, if g denotes the Dirichlet boundary datum and f the Poisson datum, we have a solution for each quadruple ( ϵ , ϕ , g , f ). Our aim is to study how the solution depends on ( ϵ , ϕ , g , f ), especially when ϵ is very small and the holes narrow to points. In contrast with previous works, we do not introduce the assumption that f has zero integral on the fundamental periodicity cell. This brings in a certain singular behavior for ϵ close to 0. We show that, when the dimension n of the ambient space is greater than or equal to 3, a suitable restriction of the solution can be represented with an analytic map of the quadruple ( ϵ , ϕ , g , f ) multiplied by the factor 1 / ϵ n − 2 . In case of dimension n = 2, we have to add log ϵ times the integral of f / 2 π.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231831\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231831","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑周期穿孔域中泊松方程的Dirichlet问题。域的几何结构由两个参数控制:一个是与孔的半径成比例的实数,另一个是对孔的形状建模的映射。因此,如果g表示狄利克雷边界基准,f表示泊松基准,则我们对每个四重数据都有一个解。我们的目的是研究解如何依赖于(Ş,ξ,g,f),特别是当ξ很小并且空穴窄到点时。与以前的工作相比,我们没有引入f在基本周期单元上具有零积分的假设。这带来了接近0的ε的某种奇异行为。我们证明,当环境空间的维度n大于或等于3时,解的适当限制可以用四重(ξ,ξ,g,f)乘以因子1/ξn−2的解析图来表示。在维度n=2的情况下,我们必须将log乘以f/2π的积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular behavior for a multi-parameter periodic Dirichlet problem
We consider a Dirichlet problem for the Poisson equation in a periodically perforated domain. The geometry of the domain is controlled by two parameters: a real number ϵ > 0, proportional to the radius of the holes, and a map ϕ, which models the shape of the holes. So, if g denotes the Dirichlet boundary datum and f the Poisson datum, we have a solution for each quadruple ( ϵ , ϕ , g , f ). Our aim is to study how the solution depends on ( ϵ , ϕ , g , f ), especially when ϵ is very small and the holes narrow to points. In contrast with previous works, we do not introduce the assumption that f has zero integral on the fundamental periodicity cell. This brings in a certain singular behavior for ϵ close to 0. We show that, when the dimension n of the ambient space is greater than or equal to 3, a suitable restriction of the solution can be represented with an analytic map of the quadruple ( ϵ , ϕ , g , f ) multiplied by the factor 1 / ϵ n − 2 . In case of dimension n = 2, we have to add log ϵ times the integral of f / 2 π.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信