用于植物叶片分类的叶片自动对齐和部分形状特征提取

Q4 Computer Science
L. Hamid, S. Al-Haddad
{"title":"用于植物叶片分类的叶片自动对齐和部分形状特征提取","authors":"L. Hamid, S. Al-Haddad","doi":"10.5565/REV/ELCVIA.1143","DOIUrl":null,"url":null,"abstract":"The last few decades have witnessed various approaches to automate the process of plant classification using the characteristics of the leaf. Several approaches have been proposed, and the majority focused on global shape features. However, one challenge that faces this task is the high interclass similarity amongst the leaves of different species in terms of the global shape. Furthermore, there always has been an obstacle against full automation as several approaches require user intervention to align the leaf. Therefore, a new set of Quartile Features (QF) is proposed in this paper to describe the partial shape of the leaf, in addition to an automated alignment approach to automate the system. The QF are extracted from the horizontal and vertical leaf quartiles to describe the partial shape of the leaf and the relations among its parts. The well-known Flavia dataset has been selected for the evaluation of the proposed system. The experimental results indicate the ability of the proposed alignment algorithm to align leaves with different shapes and maintain a correct classification accuracy regardless of the orientation of the input leaf samples. Furthermore, the proposed QF indicated promising results by increasing the accuracy of the classification by a range of approximately 26% to 30% when combined with Hu’s Moment Invariants, using k-fold cross-validation technique.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5565/REV/ELCVIA.1143","citationCount":"3","resultStr":"{\"title\":\"Automated Leaf Alignment and Partial Shape Feature Extraction for Plant Leaf Classification\",\"authors\":\"L. Hamid, S. Al-Haddad\",\"doi\":\"10.5565/REV/ELCVIA.1143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last few decades have witnessed various approaches to automate the process of plant classification using the characteristics of the leaf. Several approaches have been proposed, and the majority focused on global shape features. However, one challenge that faces this task is the high interclass similarity amongst the leaves of different species in terms of the global shape. Furthermore, there always has been an obstacle against full automation as several approaches require user intervention to align the leaf. Therefore, a new set of Quartile Features (QF) is proposed in this paper to describe the partial shape of the leaf, in addition to an automated alignment approach to automate the system. The QF are extracted from the horizontal and vertical leaf quartiles to describe the partial shape of the leaf and the relations among its parts. The well-known Flavia dataset has been selected for the evaluation of the proposed system. The experimental results indicate the ability of the proposed alignment algorithm to align leaves with different shapes and maintain a correct classification accuracy regardless of the orientation of the input leaf samples. Furthermore, the proposed QF indicated promising results by increasing the accuracy of the classification by a range of approximately 26% to 30% when combined with Hu’s Moment Invariants, using k-fold cross-validation technique.\",\"PeriodicalId\":38711,\"journal\":{\"name\":\"Electronic Letters on Computer Vision and Image Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5565/REV/ELCVIA.1143\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Letters on Computer Vision and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/REV/ELCVIA.1143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/REV/ELCVIA.1143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

在过去的几十年里,人们采用了各种方法来利用叶子的特征实现植物分类过程的自动化。已经提出了几种方法,大多数方法侧重于全局形状特征。然而,这项任务面临的一个挑战是,就全球形状而言,不同物种的叶片之间具有高度的类间相似性。此外,由于有几种方法需要用户干预来对齐叶片,因此始终存在阻碍完全自动化的障碍。因此,除了一种自动对齐方法来实现系统自动化外,本文还提出了一组新的四分位数特征(QF)来描述叶片的局部形状。QF是从水平和垂直的叶四分位数中提取的,用于描述叶的局部形状及其各部分之间的关系。已选择著名的Flavia数据集对所提出的系统进行评估。实验结果表明,无论输入叶片样本的方向如何,所提出的对齐算法都能够对齐具有不同形状的叶片,并保持正确的分类精度。此外,当与Hu矩不变量相结合时,所提出的QF通过使用k倍交叉验证技术将分类的准确性提高了约26%至30%,从而表明了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Leaf Alignment and Partial Shape Feature Extraction for Plant Leaf Classification
The last few decades have witnessed various approaches to automate the process of plant classification using the characteristics of the leaf. Several approaches have been proposed, and the majority focused on global shape features. However, one challenge that faces this task is the high interclass similarity amongst the leaves of different species in terms of the global shape. Furthermore, there always has been an obstacle against full automation as several approaches require user intervention to align the leaf. Therefore, a new set of Quartile Features (QF) is proposed in this paper to describe the partial shape of the leaf, in addition to an automated alignment approach to automate the system. The QF are extracted from the horizontal and vertical leaf quartiles to describe the partial shape of the leaf and the relations among its parts. The well-known Flavia dataset has been selected for the evaluation of the proposed system. The experimental results indicate the ability of the proposed alignment algorithm to align leaves with different shapes and maintain a correct classification accuracy regardless of the orientation of the input leaf samples. Furthermore, the proposed QF indicated promising results by increasing the accuracy of the classification by a range of approximately 26% to 30% when combined with Hu’s Moment Invariants, using k-fold cross-validation technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Letters on Computer Vision and Image Analysis
Electronic Letters on Computer Vision and Image Analysis Computer Science-Computer Vision and Pattern Recognition
CiteScore
2.50
自引率
0.00%
发文量
19
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信