逻辑特征与神经网络相结合用于受控与非受控火灾分类的比较研究

Q4 Engineering
Omkar Bhosale, Aryan Dande, Sagar Abhyankar, Sarang A. Joshi
{"title":"逻辑特征与神经网络相结合用于受控与非受控火灾分类的比较研究","authors":"Omkar Bhosale, Aryan Dande, Sagar Abhyankar, Sarang A. Joshi","doi":"10.21817/indjcse/2023/v14i4/231404048","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of the performance of a convolutional neural network (CNN) for the classification of controlled and uncontrolled fires. The study focuses on the incorporation of custom features such as standard deviation, spikes, fall, vertical intensity arrays (VIA), and arc length to improve the accuracy of the model. These features were individually concatenated with the features selected by the neural network to test the cumulative performance. The paper also puts forth the comparison between a logical (decision tree) classifier and a black box (neural net) classifier and the corresponding performance analysis.","PeriodicalId":52250,"journal":{"name":"Indian Journal of Computer Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INTEGRATION OF LOGICAL FEATURES WITH NEURAL NETWORKS FOR CONTROLLED VS UNCONTROLLED FIRE CLASSIFICATION: A COMPARATIVE STUDY\",\"authors\":\"Omkar Bhosale, Aryan Dande, Sagar Abhyankar, Sarang A. Joshi\",\"doi\":\"10.21817/indjcse/2023/v14i4/231404048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analysis of the performance of a convolutional neural network (CNN) for the classification of controlled and uncontrolled fires. The study focuses on the incorporation of custom features such as standard deviation, spikes, fall, vertical intensity arrays (VIA), and arc length to improve the accuracy of the model. These features were individually concatenated with the features selected by the neural network to test the cumulative performance. The paper also puts forth the comparison between a logical (decision tree) classifier and a black box (neural net) classifier and the corresponding performance analysis.\",\"PeriodicalId\":52250,\"journal\":{\"name\":\"Indian Journal of Computer Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Computer Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21817/indjcse/2023/v14i4/231404048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21817/indjcse/2023/v14i4/231404048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了卷积神经网络(CNN)在火灾控制和非控制分类中的性能。该研究的重点是结合自定义特征,如标准差、尖峰、下降、垂直强度阵列(VIA)和弧长,以提高模型的准确性。将这些特征与神经网络选择的特征单独连接起来,测试累积性能。本文还提出了逻辑(决策树)分类器与黑盒(神经网络)分类器的比较和相应的性能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INTEGRATION OF LOGICAL FEATURES WITH NEURAL NETWORKS FOR CONTROLLED VS UNCONTROLLED FIRE CLASSIFICATION: A COMPARATIVE STUDY
This paper presents an analysis of the performance of a convolutional neural network (CNN) for the classification of controlled and uncontrolled fires. The study focuses on the incorporation of custom features such as standard deviation, spikes, fall, vertical intensity arrays (VIA), and arc length to improve the accuracy of the model. These features were individually concatenated with the features selected by the neural network to test the cumulative performance. The paper also puts forth the comparison between a logical (decision tree) classifier and a black box (neural net) classifier and the corresponding performance analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Journal of Computer Science and Engineering
Indian Journal of Computer Science and Engineering Engineering-Engineering (miscellaneous)
自引率
0.00%
发文量
146
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信