考虑二阶效应的交流电机暂态建模

Q4 Engineering
O. Korolova, J. Cubillo, B. Ponick
{"title":"考虑二阶效应的交流电机暂态建模","authors":"O. Korolova, J. Cubillo, B. Ponick","doi":"10.5604/01.3001.0012.0695","DOIUrl":null,"url":null,"abstract":"In this paper, the transient simulation of AC machines considering spatial field harmonics and current displacement in rotor bars is examined. The first point of discussion is the sufficient order of the equivalent circuit of the current displacement model for its accurate co-simulation with the higher spatial field harmonics. In the second place, the problem of inversion of the inductance matrix considering the flux linkage through higher spatial harmonics is studied.\n\n","PeriodicalId":53131,"journal":{"name":"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TRANSIENT MODELING OF AC MACHINES CONSIDERING SECOND ORDER EFFECTS\",\"authors\":\"O. Korolova, J. Cubillo, B. Ponick\",\"doi\":\"10.5604/01.3001.0012.0695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the transient simulation of AC machines considering spatial field harmonics and current displacement in rotor bars is examined. The first point of discussion is the sufficient order of the equivalent circuit of the current displacement model for its accurate co-simulation with the higher spatial field harmonics. In the second place, the problem of inversion of the inductance matrix considering the flux linkage through higher spatial harmonics is studied.\\n\\n\",\"PeriodicalId\":53131,\"journal\":{\"name\":\"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0012.0695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0012.0695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了考虑空间场谐波和转子棒内电流位移的交流电机暂态仿真。讨论的第一点是电流位移模型的等效电路的足够阶数,以便与高空间场谐波进行精确的联合仿真。其次,研究了考虑高次空间谐波磁链的电感矩阵反演问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TRANSIENT MODELING OF AC MACHINES CONSIDERING SECOND ORDER EFFECTS
In this paper, the transient simulation of AC machines considering spatial field harmonics and current displacement in rotor bars is examined. The first point of discussion is the sufficient order of the equivalent circuit of the current displacement model for its accurate co-simulation with the higher spatial field harmonics. In the second place, the problem of inversion of the inductance matrix considering the flux linkage through higher spatial harmonics is studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
40
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信