Jiaqiang Zou, Hao Chen, Yu-hong Jiang, W. Zhang, Aihua Liu
{"title":"基于粒子群优化的数值反分析实时估计边坡稳定性的有效方法","authors":"Jiaqiang Zou, Hao Chen, Yu-hong Jiang, W. Zhang, Aihua Liu","doi":"10.1515/arh-2022-0143","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this article is to provide an effective approach to evaluate slope stability in real-time in a reservoir area, which is significant for carrying out risk management for landslide disaster prevention in various engineering practices. A comprehensive idea for stability estimation of bank slope under the influence of rainfall or the reservoir water level is presented in this work. Slope stability analysis and back analysis of soil parameters are both included based on numerical simulation. The mechanical parameters of the bank slope were first back-analyzed using particle swarm optimization (PSO), and real-time stability analysis with high accuracy and efficiency was then established based on multiple continuously monitored displacements. Two case studies were carried out in this study. The results show that (1) based on the real-time monitored displacement and numerical simulation, the mechanical parameters of the slope can be reasonably retrieved through PSO; and (2) based on the inverse mechanical parameters, the safety factors of the slope can be numerically obtained, so that the real-time estimation of slope stability can be realized.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective method for real-time estimation of slope stability with numerical back analysis based on particle swarm optimization\",\"authors\":\"Jiaqiang Zou, Hao Chen, Yu-hong Jiang, W. Zhang, Aihua Liu\",\"doi\":\"10.1515/arh-2022-0143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this article is to provide an effective approach to evaluate slope stability in real-time in a reservoir area, which is significant for carrying out risk management for landslide disaster prevention in various engineering practices. A comprehensive idea for stability estimation of bank slope under the influence of rainfall or the reservoir water level is presented in this work. Slope stability analysis and back analysis of soil parameters are both included based on numerical simulation. The mechanical parameters of the bank slope were first back-analyzed using particle swarm optimization (PSO), and real-time stability analysis with high accuracy and efficiency was then established based on multiple continuously monitored displacements. Two case studies were carried out in this study. The results show that (1) based on the real-time monitored displacement and numerical simulation, the mechanical parameters of the slope can be reasonably retrieved through PSO; and (2) based on the inverse mechanical parameters, the safety factors of the slope can be numerically obtained, so that the real-time estimation of slope stability can be realized.\",\"PeriodicalId\":50738,\"journal\":{\"name\":\"Applied Rheology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/arh-2022-0143\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/arh-2022-0143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
An effective method for real-time estimation of slope stability with numerical back analysis based on particle swarm optimization
Abstract The purpose of this article is to provide an effective approach to evaluate slope stability in real-time in a reservoir area, which is significant for carrying out risk management for landslide disaster prevention in various engineering practices. A comprehensive idea for stability estimation of bank slope under the influence of rainfall or the reservoir water level is presented in this work. Slope stability analysis and back analysis of soil parameters are both included based on numerical simulation. The mechanical parameters of the bank slope were first back-analyzed using particle swarm optimization (PSO), and real-time stability analysis with high accuracy and efficiency was then established based on multiple continuously monitored displacements. Two case studies were carried out in this study. The results show that (1) based on the real-time monitored displacement and numerical simulation, the mechanical parameters of the slope can be reasonably retrieved through PSO; and (2) based on the inverse mechanical parameters, the safety factors of the slope can be numerically obtained, so that the real-time estimation of slope stability can be realized.
期刊介绍:
Applied Rheology is a peer-reviewed, open access, electronic journal devoted to the publication in the field of applied rheology. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.