基于DPW的高亏格Lawson曲面面积估计

IF 1.3 1区 数学 Q1 MATHEMATICS
Lynn Heller, Sebastian Heller, M. Traizet
{"title":"基于DPW的高亏格Lawson曲面面积估计","authors":"Lynn Heller, Sebastian Heller, M. Traizet","doi":"10.4310/jdg/1685121318","DOIUrl":null,"url":null,"abstract":"Starting at a saddle tower surface, we give a new existence proof of the Lawson surfaces $\\xi_{m,k}$ of high genus by deforming the corresponding DPW potential. As a byproduct, we obtain for fixed $m$ estimates on the area of $ \\xi_{m,k}$ in terms of their genus $g=m k \\gg1$.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Area estimates for high genus Lawson surfaces via DPW\",\"authors\":\"Lynn Heller, Sebastian Heller, M. Traizet\",\"doi\":\"10.4310/jdg/1685121318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting at a saddle tower surface, we give a new existence proof of the Lawson surfaces $\\\\xi_{m,k}$ of high genus by deforming the corresponding DPW potential. As a byproduct, we obtain for fixed $m$ estimates on the area of $ \\\\xi_{m,k}$ in terms of their genus $g=m k \\\\gg1$.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1685121318\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1685121318","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

从鞍形塔表面出发,通过使相应的DPW势变形,给出了高亏格的Lawson表面$\xi_{m,k}$的一个新的存在性证明。作为副产品,我们获得了$\xi_{m,k}$区域的固定$m$估计值,以属$g=mk\gg1$为单位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Area estimates for high genus Lawson surfaces via DPW
Starting at a saddle tower surface, we give a new existence proof of the Lawson surfaces $\xi_{m,k}$ of high genus by deforming the corresponding DPW potential. As a byproduct, we obtain for fixed $m$ estimates on the area of $ \xi_{m,k}$ in terms of their genus $g=m k \gg1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信