{"title":"一类半线性抛物型系统可解性的初始函数的最优奇异性","authors":"Y. Fujishima, Kazuhiro Ishige","doi":"10.2969/jmsj/86058605","DOIUrl":null,"url":null,"abstract":"Let $(u,v)$ be a nonnegative solution to the semilinear parabolic system \\[ \\mbox{(P)} \\qquad \\cases{ \\partial_t u=D_1\\Delta u+v^p, & $x\\in{\\bf R}^N,\\,\\,\\,t>0,$\\\\ \\partial_t v=D_2\\Delta v+u^q, & $x\\in{\\bf R}^N,\\,\\,\\,t>0,$\\\\ (u(\\cdot,0),v(\\cdot,0))=(\\mu,\\nu), & $x\\in{\\bf R}^N,$ } \\] where $D_1$, $D_2>0$, $0 1$ and $(\\mu,\\nu)$ is a pair of nonnegative Radon measures or nonnegative measurable functions in ${\\bf R}^N$. In this paper we study sufficient conditions on the initial data for the solvability of problem~(P) and clarify optimal singularities of the initial functions for the solvability.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal singularities of initial functions for solvability of a semilinear parabolic system\",\"authors\":\"Y. Fujishima, Kazuhiro Ishige\",\"doi\":\"10.2969/jmsj/86058605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(u,v)$ be a nonnegative solution to the semilinear parabolic system \\\\[ \\\\mbox{(P)} \\\\qquad \\\\cases{ \\\\partial_t u=D_1\\\\Delta u+v^p, & $x\\\\in{\\\\bf R}^N,\\\\,\\\\,\\\\,t>0,$\\\\\\\\ \\\\partial_t v=D_2\\\\Delta v+u^q, & $x\\\\in{\\\\bf R}^N,\\\\,\\\\,\\\\,t>0,$\\\\\\\\ (u(\\\\cdot,0),v(\\\\cdot,0))=(\\\\mu,\\\\nu), & $x\\\\in{\\\\bf R}^N,$ } \\\\] where $D_1$, $D_2>0$, $0 1$ and $(\\\\mu,\\\\nu)$ is a pair of nonnegative Radon measures or nonnegative measurable functions in ${\\\\bf R}^N$. In this paper we study sufficient conditions on the initial data for the solvability of problem~(P) and clarify optimal singularities of the initial functions for the solvability.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/86058605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/86058605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal singularities of initial functions for solvability of a semilinear parabolic system
Let $(u,v)$ be a nonnegative solution to the semilinear parabolic system \[ \mbox{(P)} \qquad \cases{ \partial_t u=D_1\Delta u+v^p, & $x\in{\bf R}^N,\,\,\,t>0,$\\ \partial_t v=D_2\Delta v+u^q, & $x\in{\bf R}^N,\,\,\,t>0,$\\ (u(\cdot,0),v(\cdot,0))=(\mu,\nu), & $x\in{\bf R}^N,$ } \] where $D_1$, $D_2>0$, $0 1$ and $(\mu,\nu)$ is a pair of nonnegative Radon measures or nonnegative measurable functions in ${\bf R}^N$. In this paper we study sufficient conditions on the initial data for the solvability of problem~(P) and clarify optimal singularities of the initial functions for the solvability.