一类半线性抛物型系统可解性的初始函数的最优奇异性

Pub Date : 2020-12-10 DOI:10.2969/jmsj/86058605
Y. Fujishima, Kazuhiro Ishige
{"title":"一类半线性抛物型系统可解性的初始函数的最优奇异性","authors":"Y. Fujishima, Kazuhiro Ishige","doi":"10.2969/jmsj/86058605","DOIUrl":null,"url":null,"abstract":"Let $(u,v)$ be a nonnegative solution to the semilinear parabolic system \\[ \\mbox{(P)} \\qquad \\cases{ \\partial_t u=D_1\\Delta u+v^p, & $x\\in{\\bf R}^N,\\,\\,\\,t>0,$\\\\ \\partial_t v=D_2\\Delta v+u^q, & $x\\in{\\bf R}^N,\\,\\,\\,t>0,$\\\\ (u(\\cdot,0),v(\\cdot,0))=(\\mu,\\nu), & $x\\in{\\bf R}^N,$ } \\] where $D_1$, $D_2>0$, $0 1$ and $(\\mu,\\nu)$ is a pair of nonnegative Radon measures or nonnegative measurable functions in ${\\bf R}^N$. In this paper we study sufficient conditions on the initial data for the solvability of problem~(P) and clarify optimal singularities of the initial functions for the solvability.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal singularities of initial functions for solvability of a semilinear parabolic system\",\"authors\":\"Y. Fujishima, Kazuhiro Ishige\",\"doi\":\"10.2969/jmsj/86058605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(u,v)$ be a nonnegative solution to the semilinear parabolic system \\\\[ \\\\mbox{(P)} \\\\qquad \\\\cases{ \\\\partial_t u=D_1\\\\Delta u+v^p, & $x\\\\in{\\\\bf R}^N,\\\\,\\\\,\\\\,t>0,$\\\\\\\\ \\\\partial_t v=D_2\\\\Delta v+u^q, & $x\\\\in{\\\\bf R}^N,\\\\,\\\\,\\\\,t>0,$\\\\\\\\ (u(\\\\cdot,0),v(\\\\cdot,0))=(\\\\mu,\\\\nu), & $x\\\\in{\\\\bf R}^N,$ } \\\\] where $D_1$, $D_2>0$, $0 1$ and $(\\\\mu,\\\\nu)$ is a pair of nonnegative Radon measures or nonnegative measurable functions in ${\\\\bf R}^N$. In this paper we study sufficient conditions on the initial data for the solvability of problem~(P) and clarify optimal singularities of the initial functions for the solvability.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/86058605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/86058605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设$(u,v$x\in{\bf R}^N,$}\]其中$D_1$,$D_2>0$,$0 1$和$(\mu,\nu)$是${\bf R}^N$中的一对非负Radon测度或非负可测量函数。本文研究了问题~(P)可解性的初始数据的充分条件,并阐明了问题可解性初始函数的最优奇异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Optimal singularities of initial functions for solvability of a semilinear parabolic system
Let $(u,v)$ be a nonnegative solution to the semilinear parabolic system \[ \mbox{(P)} \qquad \cases{ \partial_t u=D_1\Delta u+v^p, & $x\in{\bf R}^N,\,\,\,t>0,$\\ \partial_t v=D_2\Delta v+u^q, & $x\in{\bf R}^N,\,\,\,t>0,$\\ (u(\cdot,0),v(\cdot,0))=(\mu,\nu), & $x\in{\bf R}^N,$ } \] where $D_1$, $D_2>0$, $0 1$ and $(\mu,\nu)$ is a pair of nonnegative Radon measures or nonnegative measurable functions in ${\bf R}^N$. In this paper we study sufficient conditions on the initial data for the solvability of problem~(P) and clarify optimal singularities of the initial functions for the solvability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信