{"title":"斜对合的乘积","authors":"Jesus Paolo Joven, Agnes T. Paras","doi":"10.13001/ela.2023.7709","DOIUrl":null,"url":null,"abstract":"It is shown that every $2n$-by-$2n$ matrix over a field $\\mathbb{F}$ with determinant 1 is a product of (i) four or fewer skew-involutions ($A^2 = -I$) provided $\\mathbb{F} \\neq \\mathbb{Z}_3$, and (ii) eight or fewer skew-involutions if $\\mathbb{F} = \\mathbb{Z}_3$ and $n > 1$. Every real symplectic matrix is a product of six real symplectic skew-involutions, and an explicit factorization of a complex symplectic matrix into two symplectic skew-involutions is given.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Products of skew-involutions\",\"authors\":\"Jesus Paolo Joven, Agnes T. Paras\",\"doi\":\"10.13001/ela.2023.7709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that every $2n$-by-$2n$ matrix over a field $\\\\mathbb{F}$ with determinant 1 is a product of (i) four or fewer skew-involutions ($A^2 = -I$) provided $\\\\mathbb{F} \\\\neq \\\\mathbb{Z}_3$, and (ii) eight or fewer skew-involutions if $\\\\mathbb{F} = \\\\mathbb{Z}_3$ and $n > 1$. Every real symplectic matrix is a product of six real symplectic skew-involutions, and an explicit factorization of a complex symplectic matrix into two symplectic skew-involutions is given.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2023.7709\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7709","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
It is shown that every $2n$-by-$2n$ matrix over a field $\mathbb{F}$ with determinant 1 is a product of (i) four or fewer skew-involutions ($A^2 = -I$) provided $\mathbb{F} \neq \mathbb{Z}_3$, and (ii) eight or fewer skew-involutions if $\mathbb{F} = \mathbb{Z}_3$ and $n > 1$. Every real symplectic matrix is a product of six real symplectic skew-involutions, and an explicit factorization of a complex symplectic matrix into two symplectic skew-involutions is given.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.