应用LDA和QDA对脑电图信号进行分类,应用于基于P300的脑机接口

Tecnia Pub Date : 2018-12-18 DOI:10.21754/TECNIA.V28I2.573
Franklin Alfredo Cabezas, Fermín Rafael Cabezas Soldevilla
{"title":"应用LDA和QDA对脑电图信号进行分类,应用于基于P300的脑机接口","authors":"Franklin Alfredo Cabezas, Fermín Rafael Cabezas Soldevilla","doi":"10.21754/TECNIA.V28I2.573","DOIUrl":null,"url":null,"abstract":"Se han empleado diferentes técnicas de Machine Learning con la finalidad de identificar las voluntades de pacientes con enfermedades neurodegenerativas. Para tal fin se empleó una base de datos de señales electroencefalográficas (EEG) las cuales fueron filtradas y procesadas. La determinación de las voluntades de los pacientes se consiguió a través de la identificación de las ondas cerebrales P300, estas señales se presentan en el cerebro como respuesta a un estímulo inesperado y entre sus muchas aplicaciones se encuentra la implementación de la llamada Interface Cerebro – Computador.","PeriodicalId":31729,"journal":{"name":"Tecnia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clasificación de señales EEG usando LDA y QDA aplicado a una Interface Cerebro – Computador basada en P300\",\"authors\":\"Franklin Alfredo Cabezas, Fermín Rafael Cabezas Soldevilla\",\"doi\":\"10.21754/TECNIA.V28I2.573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Se han empleado diferentes técnicas de Machine Learning con la finalidad de identificar las voluntades de pacientes con enfermedades neurodegenerativas. Para tal fin se empleó una base de datos de señales electroencefalográficas (EEG) las cuales fueron filtradas y procesadas. La determinación de las voluntades de los pacientes se consiguió a través de la identificación de las ondas cerebrales P300, estas señales se presentan en el cerebro como respuesta a un estímulo inesperado y entre sus muchas aplicaciones se encuentra la implementación de la llamada Interface Cerebro – Computador.\",\"PeriodicalId\":31729,\"journal\":{\"name\":\"Tecnia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tecnia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21754/TECNIA.V28I2.573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecnia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21754/TECNIA.V28I2.573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不同的机器学习技术已经被用于确定神经退行性疾病患者的意愿。为此,我们使用了一个经过过滤和处理的脑电图(EEG)信号数据库。将决心给自己通过识别患者脑电波信号,这些信号中出现的大脑针对一个意想不到的刺激和反应之间的许多应用程序被调用接口实现大脑—电脑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clasificación de señales EEG usando LDA y QDA aplicado a una Interface Cerebro – Computador basada en P300
Se han empleado diferentes técnicas de Machine Learning con la finalidad de identificar las voluntades de pacientes con enfermedades neurodegenerativas. Para tal fin se empleó una base de datos de señales electroencefalográficas (EEG) las cuales fueron filtradas y procesadas. La determinación de las voluntades de los pacientes se consiguió a través de la identificación de las ondas cerebrales P300, estas señales se presentan en el cerebro como respuesta a un estímulo inesperado y entre sus muchas aplicaciones se encuentra la implementación de la llamada Interface Cerebro – Computador.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信