通过Fock空间的Harer–Zagier公式

IF 1.2 3区 数学 Q1 MATHEMATICS
D. Lewanski
{"title":"通过Fock空间的Harer–Zagier公式","authors":"D. Lewanski","doi":"10.4310/cntp.2019.v13.n3.a4","DOIUrl":null,"url":null,"abstract":"The goal of this note is to provide a very short proof of Harer-Zagier formula for the number of ways of obtaining a genus g Riemann surface by identifying in pairs the sides of a (2d)-gon, using semi-infinite wedge formalism operators.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Harer–Zagier formula via Fock space\",\"authors\":\"D. Lewanski\",\"doi\":\"10.4310/cntp.2019.v13.n3.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this note is to provide a very short proof of Harer-Zagier formula for the number of ways of obtaining a genus g Riemann surface by identifying in pairs the sides of a (2d)-gon, using semi-infinite wedge formalism operators.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2019.v13.n3.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2019.v13.n3.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

这篇文章的目的是用半无限楔形形式算子,对Harer-Zagier公式提供一个非常简短的证明,证明通过成对地识别(2d)形的边来获得g -黎曼曲面的方法的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harer–Zagier formula via Fock space
The goal of this note is to provide a very short proof of Harer-Zagier formula for the number of ways of obtaining a genus g Riemann surface by identifying in pairs the sides of a (2d)-gon, using semi-infinite wedge formalism operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信