{"title":"天然存在的烷氧基取代烯丙基苯肉豆蔻素的产生、分离、药理潜力、代谢和毒性","authors":"S. Kaushal, Vishaldeep Kaur, Heena, D. Utreja","doi":"10.2174/1570193x20666230314105024","DOIUrl":null,"url":null,"abstract":"\n\nNatural products are secondary metabolites obtained from plants, animals, and microorganisms with diverse chemical structures resulting in diverse biological functions and drug-like properties.\n\n\n\nThis review article summarizes in detail the occurrence, detection, isolation, various pharmacological properties, metabolism, and toxicity of a natural compound i.e., 5-Allyl-1-methoxy-2,3-methylenedioxybenzene commonly known as Myristicin.\n\n\n\nA relevant literature search was made using the keywords essential oil, mace, myristicin, nutmeg, and pharmacological activities from different databases such as Pub Med, Sci finder, Science Direct, and Google Scholar. The literature search results presented articles from 1963 to 2022. Thereafter, the articles were carefully screened and selected for review.\n\n\n\nMyristicin, an alkoxy-substituted allylbenzene is present in major to minor amounts in the essential oils obtained from different plant parts and exhibits various pharmacological properties such as antimicrobial, antioxidant, antiproliferative, anti-inflammatory, insecticidal, and hepatoprotective. It forms 10 metabolites by reduction, demethylation, hydroxylation, ring formation, ring-opening, and conjugate formation. In the liver, myristicin has been metabolized by Cytochrome P450 complex enzymes to generate active metabolite (1ˈ hyroxymyristicin) responsible for cytotoxic, genotoxic and apoptotic effects (150 µM). But, myristicin at 600 µM does not produce enough 1ʼ-hydroxymyristicin to give the final toxicant.\n\n\n\nMyristicin poses no major risk to human health through the consumption of herbs and spices due to its presence in low amounts. It has great potential to be used in the traditional system of medicine. We hope that this review will provide complete knowledge about myristicin on a single platform.\n","PeriodicalId":18632,"journal":{"name":"Mini-reviews in Organic Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Occurrence, Isolation, Pharmacological Potential, Metabolism, and Toxicity of Myristicin: A Naturally Occurring Alkoxy-Substituted Allylbenzene\",\"authors\":\"S. Kaushal, Vishaldeep Kaur, Heena, D. Utreja\",\"doi\":\"10.2174/1570193x20666230314105024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nNatural products are secondary metabolites obtained from plants, animals, and microorganisms with diverse chemical structures resulting in diverse biological functions and drug-like properties.\\n\\n\\n\\nThis review article summarizes in detail the occurrence, detection, isolation, various pharmacological properties, metabolism, and toxicity of a natural compound i.e., 5-Allyl-1-methoxy-2,3-methylenedioxybenzene commonly known as Myristicin.\\n\\n\\n\\nA relevant literature search was made using the keywords essential oil, mace, myristicin, nutmeg, and pharmacological activities from different databases such as Pub Med, Sci finder, Science Direct, and Google Scholar. The literature search results presented articles from 1963 to 2022. Thereafter, the articles were carefully screened and selected for review.\\n\\n\\n\\nMyristicin, an alkoxy-substituted allylbenzene is present in major to minor amounts in the essential oils obtained from different plant parts and exhibits various pharmacological properties such as antimicrobial, antioxidant, antiproliferative, anti-inflammatory, insecticidal, and hepatoprotective. It forms 10 metabolites by reduction, demethylation, hydroxylation, ring formation, ring-opening, and conjugate formation. In the liver, myristicin has been metabolized by Cytochrome P450 complex enzymes to generate active metabolite (1ˈ hyroxymyristicin) responsible for cytotoxic, genotoxic and apoptotic effects (150 µM). But, myristicin at 600 µM does not produce enough 1ʼ-hydroxymyristicin to give the final toxicant.\\n\\n\\n\\nMyristicin poses no major risk to human health through the consumption of herbs and spices due to its presence in low amounts. It has great potential to be used in the traditional system of medicine. We hope that this review will provide complete knowledge about myristicin on a single platform.\\n\",\"PeriodicalId\":18632,\"journal\":{\"name\":\"Mini-reviews in Organic Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mini-reviews in Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/1570193x20666230314105024\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini-reviews in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570193x20666230314105024","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Occurrence, Isolation, Pharmacological Potential, Metabolism, and Toxicity of Myristicin: A Naturally Occurring Alkoxy-Substituted Allylbenzene
Natural products are secondary metabolites obtained from plants, animals, and microorganisms with diverse chemical structures resulting in diverse biological functions and drug-like properties.
This review article summarizes in detail the occurrence, detection, isolation, various pharmacological properties, metabolism, and toxicity of a natural compound i.e., 5-Allyl-1-methoxy-2,3-methylenedioxybenzene commonly known as Myristicin.
A relevant literature search was made using the keywords essential oil, mace, myristicin, nutmeg, and pharmacological activities from different databases such as Pub Med, Sci finder, Science Direct, and Google Scholar. The literature search results presented articles from 1963 to 2022. Thereafter, the articles were carefully screened and selected for review.
Myristicin, an alkoxy-substituted allylbenzene is present in major to minor amounts in the essential oils obtained from different plant parts and exhibits various pharmacological properties such as antimicrobial, antioxidant, antiproliferative, anti-inflammatory, insecticidal, and hepatoprotective. It forms 10 metabolites by reduction, demethylation, hydroxylation, ring formation, ring-opening, and conjugate formation. In the liver, myristicin has been metabolized by Cytochrome P450 complex enzymes to generate active metabolite (1ˈ hyroxymyristicin) responsible for cytotoxic, genotoxic and apoptotic effects (150 µM). But, myristicin at 600 µM does not produce enough 1ʼ-hydroxymyristicin to give the final toxicant.
Myristicin poses no major risk to human health through the consumption of herbs and spices due to its presence in low amounts. It has great potential to be used in the traditional system of medicine. We hope that this review will provide complete knowledge about myristicin on a single platform.
期刊介绍:
Mini-Reviews in Organic Chemistry is a peer reviewed journal which publishes original reviews on all areas of organic chemistry including organic synthesis, bioorganic and medicinal chemistry, natural product chemistry, molecular recognition, and physical organic chemistry. The emphasis will be on publishing quality papers very rapidly, without any charges.
The journal encourages submission of reviews on emerging fields of organic chemistry including:
Bioorganic Chemistry
Carbohydrate Chemistry
Chemical Biology
Chemical Process Research
Computational Organic Chemistry
Development of Synthetic Methodologies
Functional Organic Materials
Heterocyclic Chemistry
Macromolecular Chemistry
Natural Products Isolation And Synthesis
New Synthetic Methodology
Organic Reactions
Organocatalysis
Organometallic Chemistry
Theoretical Organic Chemistry
Polymer Chemistry
Stereochemistry
Structural Investigations
Supramolecular Chemistry