海森堡群的次Finsler-Horofunction边界

IF 0.9 3区 数学 Q2 MATHEMATICS
Nate Fisher, Sebastiano Golo
{"title":"海森堡群的次Finsler-Horofunction边界","authors":"Nate Fisher, Sebastiano Golo","doi":"10.1515/agms-2020-0121","DOIUrl":null,"url":null,"abstract":"Abstract We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting horofunctions to Pansu derivatives of the distance function.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"9 1","pages":"19 - 52"},"PeriodicalIF":0.9000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0121","citationCount":"0","resultStr":"{\"title\":\"Sub-Finsler Horofunction Boundaries of the Heisenberg Group\",\"authors\":\"Nate Fisher, Sebastiano Golo\",\"doi\":\"10.1515/agms-2020-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting horofunctions to Pansu derivatives of the distance function.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"9 1\",\"pages\":\"19 - 52\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2020-0121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0121\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0121","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们给出了海森堡群上多边形亚Finsler度量(即作为词度量的渐近锥出现的度量)的钟表函数边界的完整解析和几何描述。我们通过将星座函数与距离函数的Pansu导数联系起来,发展了齐次群中星座函数边界的更一般情况的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sub-Finsler Horofunction Boundaries of the Heisenberg Group
Abstract We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting horofunctions to Pansu derivatives of the distance function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信