{"title":"多元正则牛顿法与Levenberg-Marquardt法:动力学框架下肿瘤缺氧合成数据的比较","authors":"Sara Garbarino, G. Caviglia","doi":"10.2478/caim-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we propose a new algorithm to optimize the parameters of a compartmental problem describing tumor hypoxia. The method is based on a multivariate Newton approach, with Tikhonov regularization, and can be easily applied to data with diverse statistical distributions. Here we simulate [18F]−fluoromisonidazole Positron Emission Tomography dynamic data of hypoxia of a neck tumor and describe the tracer flow inside tumor with a two-compartments compartmental model. We perform optimization on the parameters of the model via the proposed Multivariate Regularized Newton method and validate it against results obtained with a standard Levenberg-Marquardt approach. The proposed algorithm returns parameters that are closer to the ground truth while preserving the statistical distribution of the data.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate Regularized Newton and Levenberg-Marquardt methods: a comparison on synthetic data of tumor hypoxia in a kinetic framework\",\"authors\":\"Sara Garbarino, G. Caviglia\",\"doi\":\"10.2478/caim-2019-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we propose a new algorithm to optimize the parameters of a compartmental problem describing tumor hypoxia. The method is based on a multivariate Newton approach, with Tikhonov regularization, and can be easily applied to data with diverse statistical distributions. Here we simulate [18F]−fluoromisonidazole Positron Emission Tomography dynamic data of hypoxia of a neck tumor and describe the tracer flow inside tumor with a two-compartments compartmental model. We perform optimization on the parameters of the model via the proposed Multivariate Regularized Newton method and validate it against results obtained with a standard Levenberg-Marquardt approach. The proposed algorithm returns parameters that are closer to the ground truth while preserving the statistical distribution of the data.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/caim-2019-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/caim-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multivariate Regularized Newton and Levenberg-Marquardt methods: a comparison on synthetic data of tumor hypoxia in a kinetic framework
Abstract In this paper we propose a new algorithm to optimize the parameters of a compartmental problem describing tumor hypoxia. The method is based on a multivariate Newton approach, with Tikhonov regularization, and can be easily applied to data with diverse statistical distributions. Here we simulate [18F]−fluoromisonidazole Positron Emission Tomography dynamic data of hypoxia of a neck tumor and describe the tracer flow inside tumor with a two-compartments compartmental model. We perform optimization on the parameters of the model via the proposed Multivariate Regularized Newton method and validate it against results obtained with a standard Levenberg-Marquardt approach. The proposed algorithm returns parameters that are closer to the ground truth while preserving the statistical distribution of the data.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.