{"title":"用强碱性阴离子交换苯乙烯-二乙烯基苯树脂由甘油和碳酸二甲酯合成碳酸甘油","authors":"A. V. Shvydko, S. A. Prihod’ko, M. N. Timofeeva","doi":"10.1134/S2070050422020088","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of glycerol carbonate from glycerol and dimethyl carbonate when using strongly basic styrene–divinylbenzene anion-exchange resins Dowex 1 × 2, Dowex 1 × 4, and Dowex 1 × 8 in the OH-form is studied. The resins are characterized by different degrees of crosslinking of their polystyrene matrices (the contents of divinylbenzene are 2, 4, and 8 wt. %, respectively). Synthesis is performed at 90–105°C, and the molar ratio of dimethyl carbonate to glycerol is 2 : 1. The yield of glycerol carbonate is shown to depend on the degree of crosslinking of the anion-exchange resin, since it falls as the degree of crosslinking rises. The highest degree of the conversion of glycerol (95%) and its selectivity toward glycerol carbonate (45.5%) are observed when using Dowex 1 × 2 and the reaction proceeds at 105°C for a period of 5 h. Advantages of considered systems over other anion- and cation-exchange resins proposed in the literature are noted.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"14 2","pages":"181 - 188"},"PeriodicalIF":0.7000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of Glycerol Carbonate from Glycerol and Dimethyl Carbonate Using Strongly Basic Anion-Exchange Styrene–Divinylbenzene Dowex Resins\",\"authors\":\"A. V. Shvydko, S. A. Prihod’ko, M. N. Timofeeva\",\"doi\":\"10.1134/S2070050422020088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The synthesis of glycerol carbonate from glycerol and dimethyl carbonate when using strongly basic styrene–divinylbenzene anion-exchange resins Dowex 1 × 2, Dowex 1 × 4, and Dowex 1 × 8 in the OH-form is studied. The resins are characterized by different degrees of crosslinking of their polystyrene matrices (the contents of divinylbenzene are 2, 4, and 8 wt. %, respectively). Synthesis is performed at 90–105°C, and the molar ratio of dimethyl carbonate to glycerol is 2 : 1. The yield of glycerol carbonate is shown to depend on the degree of crosslinking of the anion-exchange resin, since it falls as the degree of crosslinking rises. The highest degree of the conversion of glycerol (95%) and its selectivity toward glycerol carbonate (45.5%) are observed when using Dowex 1 × 2 and the reaction proceeds at 105°C for a period of 5 h. Advantages of considered systems over other anion- and cation-exchange resins proposed in the literature are noted.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"14 2\",\"pages\":\"181 - 188\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050422020088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050422020088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Synthesis of Glycerol Carbonate from Glycerol and Dimethyl Carbonate Using Strongly Basic Anion-Exchange Styrene–Divinylbenzene Dowex Resins
The synthesis of glycerol carbonate from glycerol and dimethyl carbonate when using strongly basic styrene–divinylbenzene anion-exchange resins Dowex 1 × 2, Dowex 1 × 4, and Dowex 1 × 8 in the OH-form is studied. The resins are characterized by different degrees of crosslinking of their polystyrene matrices (the contents of divinylbenzene are 2, 4, and 8 wt. %, respectively). Synthesis is performed at 90–105°C, and the molar ratio of dimethyl carbonate to glycerol is 2 : 1. The yield of glycerol carbonate is shown to depend on the degree of crosslinking of the anion-exchange resin, since it falls as the degree of crosslinking rises. The highest degree of the conversion of glycerol (95%) and its selectivity toward glycerol carbonate (45.5%) are observed when using Dowex 1 × 2 and the reaction proceeds at 105°C for a period of 5 h. Advantages of considered systems over other anion- and cation-exchange resins proposed in the literature are noted.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.