求解相空间中具有Caputo-Hadamard导数的耦合脉冲分数阶微分方程

IF 0.7 Q2 MATHEMATICS
H. Hammad, H. Aydi, Doha A. Kattan
{"title":"求解相空间中具有Caputo-Hadamard导数的耦合脉冲分数阶微分方程","authors":"H. Hammad, H. Aydi, Doha A. Kattan","doi":"10.28924/2291-8639-21-2023-95","DOIUrl":null,"url":null,"abstract":"In this manuscript, we incorporate Caputo-Hadamard derivatives in impulsive fractional differential equations to obtain a new class of impulsive fractional form. Further, the existence of solutions to the proposed problem has been inferred under a state-dependent delay and suitable hypotheses in phase spaces. Finally, the considered problem has been supported by an illustrative application.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Coupled Impulsive Fractional Differential Equations With Caputo-Hadamard Derivatives in Phase Spaces\",\"authors\":\"H. Hammad, H. Aydi, Doha A. Kattan\",\"doi\":\"10.28924/2291-8639-21-2023-95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we incorporate Caputo-Hadamard derivatives in impulsive fractional differential equations to obtain a new class of impulsive fractional form. Further, the existence of solutions to the proposed problem has been inferred under a state-dependent delay and suitable hypotheses in phase spaces. Finally, the considered problem has been supported by an illustrative application.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将Caputo-Hadamard导数引入到脉冲分数阶微分方程中,得到了一类新的脉冲分数阶形式。进一步,在状态相关延迟和相空间中适当的假设条件下,推导了所提问题解的存在性。最后,所考虑的问题得到了一个说明性应用程序的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Coupled Impulsive Fractional Differential Equations With Caputo-Hadamard Derivatives in Phase Spaces
In this manuscript, we incorporate Caputo-Hadamard derivatives in impulsive fractional differential equations to obtain a new class of impulsive fractional form. Further, the existence of solutions to the proposed problem has been inferred under a state-dependent delay and suitable hypotheses in phase spaces. Finally, the considered problem has been supported by an illustrative application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信