Salwa L. Alkhayyat, Heba Soltan Mohamed, Nadeem Shafique Butt, H. Yousof, Emadeldin I. A. Ali
{"title":"非对称再保险收入数据的部分自回归时间序列建模:统计预测和残差分析","authors":"Salwa L. Alkhayyat, Heba Soltan Mohamed, Nadeem Shafique Butt, H. Yousof, Emadeldin I. A. Ali","doi":"10.18187/pjsor.v19i3.4123","DOIUrl":null,"url":null,"abstract":"The autoregressive model is a representation of a certain kind of random process in statistics, insurance, signal processing, and econometrics; as such, it is used to describe some time-varying processes in nature, economics and insurance, etc. In this article, a novel version of the autoregressive model is proposed, in the so-called the partially autoregressive (PAR(1)) model. The results of the new approach depended on a new algorithm that we formulated to facilitate the process of statistical prediction in light of the rapid developments in time series models. The new algorithm is based on the values of the autocorrelation and partial autocorrelation functions. The new technique is assessed via re-estimating the actual time series values. Finally, the results of the PAR(1) model is compared with the Holt-Winters model under the Ljung-Box test and its corresponding p-value. A comprehensive analysis for the model residuals is presented. The matrix of the autocorrelation analysis for both points forecasting and interval forecasting are given with its relevant plots.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Asymmetric Reinsurance Revenues Data using the Partially Autoregressive Time Series Model: Statistical Forecasting and Residuals Analysis\",\"authors\":\"Salwa L. Alkhayyat, Heba Soltan Mohamed, Nadeem Shafique Butt, H. Yousof, Emadeldin I. A. Ali\",\"doi\":\"10.18187/pjsor.v19i3.4123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The autoregressive model is a representation of a certain kind of random process in statistics, insurance, signal processing, and econometrics; as such, it is used to describe some time-varying processes in nature, economics and insurance, etc. In this article, a novel version of the autoregressive model is proposed, in the so-called the partially autoregressive (PAR(1)) model. The results of the new approach depended on a new algorithm that we formulated to facilitate the process of statistical prediction in light of the rapid developments in time series models. The new algorithm is based on the values of the autocorrelation and partial autocorrelation functions. The new technique is assessed via re-estimating the actual time series values. Finally, the results of the PAR(1) model is compared with the Holt-Winters model under the Ljung-Box test and its corresponding p-value. A comprehensive analysis for the model residuals is presented. The matrix of the autocorrelation analysis for both points forecasting and interval forecasting are given with its relevant plots.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v19i3.4123\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v19i3.4123","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling the Asymmetric Reinsurance Revenues Data using the Partially Autoregressive Time Series Model: Statistical Forecasting and Residuals Analysis
The autoregressive model is a representation of a certain kind of random process in statistics, insurance, signal processing, and econometrics; as such, it is used to describe some time-varying processes in nature, economics and insurance, etc. In this article, a novel version of the autoregressive model is proposed, in the so-called the partially autoregressive (PAR(1)) model. The results of the new approach depended on a new algorithm that we formulated to facilitate the process of statistical prediction in light of the rapid developments in time series models. The new algorithm is based on the values of the autocorrelation and partial autocorrelation functions. The new technique is assessed via re-estimating the actual time series values. Finally, the results of the PAR(1) model is compared with the Holt-Winters model under the Ljung-Box test and its corresponding p-value. A comprehensive analysis for the model residuals is presented. The matrix of the autocorrelation analysis for both points forecasting and interval forecasting are given with its relevant plots.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.