雾计算环境下的安全门禁系统分析

Q3 Computer Science
Junlin Zhang
{"title":"雾计算环境下的安全门禁系统分析","authors":"Junlin Zhang","doi":"10.13052/jcsm2245-1439.1252","DOIUrl":null,"url":null,"abstract":"Fog computing is a computing environment that can respond to user operational needs in real time. Aiming at the shortcomings of user privacy protection performance and structural performance, a method of completely hiding access structures is proposed under the framework of cloud and mist computing. The cuckoo filter is applied to the fog computing environment, and users are detected through fog nodes. If an attribute is detected to exist in the fully hidden access structure, the mapping function between the attribute and the access structure line number is returned. The research results show that with the increase of the number of attributes, the advantage of attribute confirmation time for fog servers is gradually obvious; The overall delay of fog computing is shorter, the Time To Live (TTL) is longer, the average delay is only 3 ms, and the delay is lower; The completely hidden access structure constructed by the cuckoo algorithm occupies only 1% of the total system steps, which can more effectively achieve user privacy protection without increasing overhead. The proposed scheme greatly reduces the amount of computation while fully protecting user privacy, and meets the needs of users for fast and secure access.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Security Access Control Systems in Fog Computing Environment\",\"authors\":\"Junlin Zhang\",\"doi\":\"10.13052/jcsm2245-1439.1252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fog computing is a computing environment that can respond to user operational needs in real time. Aiming at the shortcomings of user privacy protection performance and structural performance, a method of completely hiding access structures is proposed under the framework of cloud and mist computing. The cuckoo filter is applied to the fog computing environment, and users are detected through fog nodes. If an attribute is detected to exist in the fully hidden access structure, the mapping function between the attribute and the access structure line number is returned. The research results show that with the increase of the number of attributes, the advantage of attribute confirmation time for fog servers is gradually obvious; The overall delay of fog computing is shorter, the Time To Live (TTL) is longer, the average delay is only 3 ms, and the delay is lower; The completely hidden access structure constructed by the cuckoo algorithm occupies only 1% of the total system steps, which can more effectively achieve user privacy protection without increasing overhead. The proposed scheme greatly reduces the amount of computation while fully protecting user privacy, and meets the needs of users for fast and secure access.\",\"PeriodicalId\":37820,\"journal\":{\"name\":\"Journal of Cyber Security and Mobility\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cyber Security and Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jcsm2245-1439.1252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

雾计算是一种能够实时响应用户操作需求的计算环境。针对用户隐私保护性能和结构性能的不足,提出了一种在云和雾计算框架下完全隐藏访问结构的方法。杜鹃滤波器应用于雾计算环境,通过雾节点检测用户。如果检测到某个属性存在于完全隐藏的访问结构中,则返回该属性与访问结构行号之间的映射函数。研究结果表明,随着属性数量的增加,雾服务器在属性确认时间上的优势逐渐明显;雾计算的总体延迟更短,生存时间(TTL)更长,平均延迟仅为3ms,并且延迟更低;布谷鸟算法构建的完全隐藏的访问结构只占系统总步骤的1%,可以在不增加开销的情况下更有效地实现用户隐私保护。该方案在充分保护用户隐私的同时,大大减少了计算量,满足了用户对快速安全访问的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Security Access Control Systems in Fog Computing Environment
Fog computing is a computing environment that can respond to user operational needs in real time. Aiming at the shortcomings of user privacy protection performance and structural performance, a method of completely hiding access structures is proposed under the framework of cloud and mist computing. The cuckoo filter is applied to the fog computing environment, and users are detected through fog nodes. If an attribute is detected to exist in the fully hidden access structure, the mapping function between the attribute and the access structure line number is returned. The research results show that with the increase of the number of attributes, the advantage of attribute confirmation time for fog servers is gradually obvious; The overall delay of fog computing is shorter, the Time To Live (TTL) is longer, the average delay is only 3 ms, and the delay is lower; The completely hidden access structure constructed by the cuckoo algorithm occupies only 1% of the total system steps, which can more effectively achieve user privacy protection without increasing overhead. The proposed scheme greatly reduces the amount of computation while fully protecting user privacy, and meets the needs of users for fast and secure access.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信