时间序列模型的自举两阶段拟极大似然估计

IF 2.9 2区 数学 Q1 ECONOMICS
Sílvia Gonçalves, Ulrich Hounyo, Andrew J. Patton, Kevin Sheppard
{"title":"时间序列模型的自举两阶段拟极大似然估计","authors":"Sílvia Gonçalves, Ulrich Hounyo, Andrew J. Patton, Kevin Sheppard","doi":"10.1080/07350015.2022.2058949","DOIUrl":null,"url":null,"abstract":"Abstract This article provides results on the validity of bootstrap inference methods for two-stage quasi-maximum likelihood estimation involving time series data, such as those used for multivariate volatility models or copula-based models. Existing approaches require the researcher to compute and combine many first- and second-order derivatives, which can be difficult to do and is susceptible to error. Bootstrap methods are simpler to apply, allowing the substitution of capital (CPU cycles) for labor (keeping track of derivatives). We show the consistency of the bootstrap distribution and consistency of bootstrap variance estimators, thereby justifying the use of bootstrap percentile intervals and bootstrap standard errors.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"41 1","pages":"683 - 694"},"PeriodicalIF":2.9000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bootstrapping Two-Stage Quasi-Maximum Likelihood Estimators of Time Series Models\",\"authors\":\"Sílvia Gonçalves, Ulrich Hounyo, Andrew J. Patton, Kevin Sheppard\",\"doi\":\"10.1080/07350015.2022.2058949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article provides results on the validity of bootstrap inference methods for two-stage quasi-maximum likelihood estimation involving time series data, such as those used for multivariate volatility models or copula-based models. Existing approaches require the researcher to compute and combine many first- and second-order derivatives, which can be difficult to do and is susceptible to error. Bootstrap methods are simpler to apply, allowing the substitution of capital (CPU cycles) for labor (keeping track of derivatives). We show the consistency of the bootstrap distribution and consistency of bootstrap variance estimators, thereby justifying the use of bootstrap percentile intervals and bootstrap standard errors.\",\"PeriodicalId\":50247,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"41 1\",\"pages\":\"683 - 694\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2058949\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2058949","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文提供了涉及时间序列数据的两阶段拟最大似然估计的bootstrap推理方法的有效性结果,例如用于多变量波动率模型或基于copula的模型的Bootstra推理方法。现有的方法需要研究人员计算和组合许多一阶和二阶导数,这可能很难做到,而且容易出错。Bootstrap方法应用起来更简单,允许用资本(CPU周期)代替劳动力(跟踪衍生品)。我们展示了自举分布的一致性和自举方差估计的一致性,从而证明了自举百分区间和自举标准误差的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrapping Two-Stage Quasi-Maximum Likelihood Estimators of Time Series Models
Abstract This article provides results on the validity of bootstrap inference methods for two-stage quasi-maximum likelihood estimation involving time series data, such as those used for multivariate volatility models or copula-based models. Existing approaches require the researcher to compute and combine many first- and second-order derivatives, which can be difficult to do and is susceptible to error. Bootstrap methods are simpler to apply, allowing the substitution of capital (CPU cycles) for labor (keeping track of derivatives). We show the consistency of the bootstrap distribution and consistency of bootstrap variance estimators, thereby justifying the use of bootstrap percentile intervals and bootstrap standard errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信