{"title":"质量守恒应力屈服法的协调辅助空间预处理器","authors":"Lukas Kogler, Philip L Lederer, Joachim Schöberl","doi":"10.1002/nla.2503","DOIUrl":null,"url":null,"abstract":"<p><p>We are studying the efficient solution of the system of linear equations stemming from the mass conserving stress-yielding (MCS) discretization of the Stokes equations. We perform static condensation to arrive at a system for the pressure and velocity unknowns. An auxiliary space preconditioner for the positive definite velocity block makes use of efficient and scalable solvers for conforming Finite Element spaces of low order and is analyzed with emphasis placed on robustness in the polynomial degree of the discretization. Numerical experiments demonstrate the potential of this approach and the efficiency of the implementation.</p>","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909495/pdf/","citationCount":"0","resultStr":"{\"title\":\"A conforming auxiliary space preconditioner for the mass conserving stress-yielding method.\",\"authors\":\"Lukas Kogler, Philip L Lederer, Joachim Schöberl\",\"doi\":\"10.1002/nla.2503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We are studying the efficient solution of the system of linear equations stemming from the mass conserving stress-yielding (MCS) discretization of the Stokes equations. We perform static condensation to arrive at a system for the pressure and velocity unknowns. An auxiliary space preconditioner for the positive definite velocity block makes use of efficient and scalable solvers for conforming Finite Element spaces of low order and is analyzed with emphasis placed on robustness in the polynomial degree of the discretization. Numerical experiments demonstrate the potential of this approach and the efficiency of the implementation.</p>\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909495/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2503\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2503","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A conforming auxiliary space preconditioner for the mass conserving stress-yielding method.
We are studying the efficient solution of the system of linear equations stemming from the mass conserving stress-yielding (MCS) discretization of the Stokes equations. We perform static condensation to arrive at a system for the pressure and velocity unknowns. An auxiliary space preconditioner for the positive definite velocity block makes use of efficient and scalable solvers for conforming Finite Element spaces of low order and is analyzed with emphasis placed on robustness in the polynomial degree of the discretization. Numerical experiments demonstrate the potential of this approach and the efficiency of the implementation.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.