M. Levantino, Q. Kong, M. Cammarata, D. Khakhulin, F. Schotte, P. Anfinrud, V. Kabanova, H. Ihee, A. Plech, S. Bratos, M. Wulff
{"title":"用同步加速器和xfel的x射线脉冲探测结构动力学","authors":"M. Levantino, Q. Kong, M. Cammarata, D. Khakhulin, F. Schotte, P. Anfinrud, V. Kabanova, H. Ihee, A. Plech, S. Bratos, M. Wulff","doi":"10.5802/crphys.85","DOIUrl":null,"url":null,"abstract":"This review focuses on how short X-ray pulses from synchrotrons and XFELs can be used to track light-induced structural changes in molecular complexes and proteins via the pump–probe method. The upgrade of the European Synchrotron Radiation Facility to a diffraction-limited storage ring, based on the seven-bend achromat lattice, and how it might boost future pump–probe experiments are described. We discuss some of the first X-ray experiments to achieve 100 ps time resolution, including the dissociation and in-cage recombination of diatomic molecules, as probed by wide-angle X-ray scattering, and the 3D filming of ligand transport in myoglobin, as probed by Laue diffraction. Finally, the use of femtosecond XFEL pulses to investigate primary chemical reactions, bond breakage and bond formation, isomerisation and electron transfer are discussed.","PeriodicalId":50650,"journal":{"name":"Comptes Rendus Physique","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural dynamics probed by X-ray pulses from synchrotrons and XFELs\",\"authors\":\"M. Levantino, Q. Kong, M. Cammarata, D. Khakhulin, F. Schotte, P. Anfinrud, V. Kabanova, H. Ihee, A. Plech, S. Bratos, M. Wulff\",\"doi\":\"10.5802/crphys.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review focuses on how short X-ray pulses from synchrotrons and XFELs can be used to track light-induced structural changes in molecular complexes and proteins via the pump–probe method. The upgrade of the European Synchrotron Radiation Facility to a diffraction-limited storage ring, based on the seven-bend achromat lattice, and how it might boost future pump–probe experiments are described. We discuss some of the first X-ray experiments to achieve 100 ps time resolution, including the dissociation and in-cage recombination of diatomic molecules, as probed by wide-angle X-ray scattering, and the 3D filming of ligand transport in myoglobin, as probed by Laue diffraction. Finally, the use of femtosecond XFEL pulses to investigate primary chemical reactions, bond breakage and bond formation, isomerisation and electron transfer are discussed.\",\"PeriodicalId\":50650,\"journal\":{\"name\":\"Comptes Rendus Physique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Physique\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5802/crphys.85\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Physique","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5802/crphys.85","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Structural dynamics probed by X-ray pulses from synchrotrons and XFELs
This review focuses on how short X-ray pulses from synchrotrons and XFELs can be used to track light-induced structural changes in molecular complexes and proteins via the pump–probe method. The upgrade of the European Synchrotron Radiation Facility to a diffraction-limited storage ring, based on the seven-bend achromat lattice, and how it might boost future pump–probe experiments are described. We discuss some of the first X-ray experiments to achieve 100 ps time resolution, including the dissociation and in-cage recombination of diatomic molecules, as probed by wide-angle X-ray scattering, and the 3D filming of ligand transport in myoglobin, as probed by Laue diffraction. Finally, the use of femtosecond XFEL pulses to investigate primary chemical reactions, bond breakage and bond formation, isomerisation and electron transfer are discussed.
期刊介绍:
The Comptes Rendus - Physique are an open acess and peer-reviewed electronic scientific journal publishing original research article. It is one of seven journals published by the Académie des sciences.
Its objective is to enable researchers to quickly share their work with the international scientific community.
The Comptes Rendus - Physique also publish journal articles, thematic issues and articles on the history of the Académie des sciences and its current scientific activity.
From 2020 onwards, the journal''s policy is based on a diamond open access model: no fees are charged to authors to publish or to readers to access articles. Thus, articles are accessible immediately, free of charge and permanently after publication.
The Comptes Rendus - Physique (8 issues per year) cover all fields of physics and astrophysics and propose dossiers. Thanks to this formula, readers of physics and astrophysics will find, in each issue, the presentation of a subject in particularly rapid development. The authors are chosen from among the most active researchers in the field and each file is coordinated by a guest editor, ensuring that the most recent and significant results are taken into account. In order to preserve the historical purpose of the Comptes Rendus, these issues also leave room for the usual notes and clarifications. The articles are written mainly in English.