用势阱法研究含特殊介质空隙的高阶反应扩散方程

IF 0.6 4区 数学 Q3 MATHEMATICS
T. Do, N. N. Trong, Bui Le Trong Thanh
{"title":"用势阱法研究含特殊介质空隙的高阶反应扩散方程","authors":"T. Do, N. N. Trong, Bui Le Trong Thanh","doi":"10.11650/tjm/220703","DOIUrl":null,"url":null,"abstract":". Let d ∈ { 1 , 2 , 3 , . . . } and Ω ⊂ R d be open bounded with Lipschitz boundary. Consider the reaction-diffusion parabolic problem where T > 0, p ∈ (1 , ∞ ), 0 (cid:54) = u 0 ∈ H 20 (Ω) and ν is the outward normal vector to ∂ Ω. We investigate the existence of a global weak solution to the problem together with the decaying and blow-up properties using the potential well method.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Higher-order Reaction-diffusion Equation with a Special Medium Void via Potential Well Method\",\"authors\":\"T. Do, N. N. Trong, Bui Le Trong Thanh\",\"doi\":\"10.11650/tjm/220703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let d ∈ { 1 , 2 , 3 , . . . } and Ω ⊂ R d be open bounded with Lipschitz boundary. Consider the reaction-diffusion parabolic problem where T > 0, p ∈ (1 , ∞ ), 0 (cid:54) = u 0 ∈ H 20 (Ω) and ν is the outward normal vector to ∂ Ω. We investigate the existence of a global weak solution to the problem together with the decaying and blow-up properties using the potential well method.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220703\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220703","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设d∈{1,2,3,…}并且Ω ⊂ Rd与Lipschitz边界是开有界的。考虑反应扩散抛物型问题,其中T>0,p∈(1,∞),0(cid:54)=u 0∈H 20(Ω) 和Γ是向外的法线向量Ω. 我们使用势阱方法研究了该问题的全局弱解的存在性以及衰变和爆破性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Higher-order Reaction-diffusion Equation with a Special Medium Void via Potential Well Method
. Let d ∈ { 1 , 2 , 3 , . . . } and Ω ⊂ R d be open bounded with Lipschitz boundary. Consider the reaction-diffusion parabolic problem where T > 0, p ∈ (1 , ∞ ), 0 (cid:54) = u 0 ∈ H 20 (Ω) and ν is the outward normal vector to ∂ Ω. We investigate the existence of a global weak solution to the problem together with the decaying and blow-up properties using the potential well method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信