{"title":"用势阱法研究含特殊介质空隙的高阶反应扩散方程","authors":"T. Do, N. N. Trong, Bui Le Trong Thanh","doi":"10.11650/tjm/220703","DOIUrl":null,"url":null,"abstract":". Let d ∈ { 1 , 2 , 3 , . . . } and Ω ⊂ R d be open bounded with Lipschitz boundary. Consider the reaction-diffusion parabolic problem where T > 0, p ∈ (1 , ∞ ), 0 (cid:54) = u 0 ∈ H 20 (Ω) and ν is the outward normal vector to ∂ Ω. We investigate the existence of a global weak solution to the problem together with the decaying and blow-up properties using the potential well method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Higher-order Reaction-diffusion Equation with a Special Medium Void via Potential Well Method\",\"authors\":\"T. Do, N. N. Trong, Bui Le Trong Thanh\",\"doi\":\"10.11650/tjm/220703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let d ∈ { 1 , 2 , 3 , . . . } and Ω ⊂ R d be open bounded with Lipschitz boundary. Consider the reaction-diffusion parabolic problem where T > 0, p ∈ (1 , ∞ ), 0 (cid:54) = u 0 ∈ H 20 (Ω) and ν is the outward normal vector to ∂ Ω. We investigate the existence of a global weak solution to the problem together with the decaying and blow-up properties using the potential well method.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a Higher-order Reaction-diffusion Equation with a Special Medium Void via Potential Well Method
. Let d ∈ { 1 , 2 , 3 , . . . } and Ω ⊂ R d be open bounded with Lipschitz boundary. Consider the reaction-diffusion parabolic problem where T > 0, p ∈ (1 , ∞ ), 0 (cid:54) = u 0 ∈ H 20 (Ω) and ν is the outward normal vector to ∂ Ω. We investigate the existence of a global weak solution to the problem together with the decaying and blow-up properties using the potential well method.