基于路径计算方法的WSN时延优化

Q3 Engineering
P. Zhu, J. Ren, Zhiyuan Ren
{"title":"基于路径计算方法的WSN时延优化","authors":"P. Zhu, J. Ren, Zhiyuan Ren","doi":"10.1051/jnwpu/20224061394","DOIUrl":null,"url":null,"abstract":"随着物联网(IoT)行业的快速发展, 无线传感器网络(WSN)融合云计算技术面临着任务处理时延高、传感器节点能量有限的挑战。因此, 提出了一种基于云雾网络架构的路径计算方法, 利用雾计算层的网络边缘设备计算资源, 将WSN监测任务合理地部署到指定边缘设备上完成处理, 以减少能耗制约下的任务处理时延。为了将任务有效地分配到雾计算层, 采用了一种任务映射规则, 将有向无环图表示的监测任务映射到无向图表示的雾计算层网络; 结合时延和能耗约束建立了一个关于寻求最优映射关系的二值优化问题; 采用模拟退火-离散二值粒子群优化(SA-BPSO)算法实现了对该优化问题的求解。仿真结果显示, 在数据量为10 Mb时, 该方法的时延性能相比较WSN融合云计算技术提高了约40%。","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"WSN latency optimization based on path calculation method\",\"authors\":\"P. Zhu, J. Ren, Zhiyuan Ren\",\"doi\":\"10.1051/jnwpu/20224061394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"随着物联网(IoT)行业的快速发展, 无线传感器网络(WSN)融合云计算技术面临着任务处理时延高、传感器节点能量有限的挑战。因此, 提出了一种基于云雾网络架构的路径计算方法, 利用雾计算层的网络边缘设备计算资源, 将WSN监测任务合理地部署到指定边缘设备上完成处理, 以减少能耗制约下的任务处理时延。为了将任务有效地分配到雾计算层, 采用了一种任务映射规则, 将有向无环图表示的监测任务映射到无向图表示的雾计算层网络; 结合时延和能耗约束建立了一个关于寻求最优映射关系的二值优化问题; 采用模拟退火-离散二值粒子群优化(SA-BPSO)算法实现了对该优化问题的求解。仿真结果显示, 在数据量为10 Mb时, 该方法的时延性能相比较WSN融合云计算技术提高了约40%。\",\"PeriodicalId\":39691,\"journal\":{\"name\":\"西北工业大学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"西北工业大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/jnwpu/20224061394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20224061394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

随着物联网(IoT)行业的快速发展, 无线传感器网络(WSN)融合云计算技术面临着任务处理时延高、传感器节点能量有限的挑战。因此, 提出了一种基于云雾网络架构的路径计算方法, 利用雾计算层的网络边缘设备计算资源, 将WSN监测任务合理地部署到指定边缘设备上完成处理, 以减少能耗制约下的任务处理时延。为了将任务有效地分配到雾计算层, 采用了一种任务映射规则, 将有向无环图表示的监测任务映射到无向图表示的雾计算层网络; 结合时延和能耗约束建立了一个关于寻求最优映射关系的二值优化问题; 采用模拟退火-离散二值粒子群优化(SA-BPSO)算法实现了对该优化问题的求解。仿真结果显示, 在数据量为10 Mb时, 该方法的时延性能相比较WSN融合云计算技术提高了约40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WSN latency optimization based on path calculation method
随着物联网(IoT)行业的快速发展, 无线传感器网络(WSN)融合云计算技术面临着任务处理时延高、传感器节点能量有限的挑战。因此, 提出了一种基于云雾网络架构的路径计算方法, 利用雾计算层的网络边缘设备计算资源, 将WSN监测任务合理地部署到指定边缘设备上完成处理, 以减少能耗制约下的任务处理时延。为了将任务有效地分配到雾计算层, 采用了一种任务映射规则, 将有向无环图表示的监测任务映射到无向图表示的雾计算层网络; 结合时延和能耗约束建立了一个关于寻求最优映射关系的二值优化问题; 采用模拟退火-离散二值粒子群优化(SA-BPSO)算法实现了对该优化问题的求解。仿真结果显示, 在数据量为10 Mb时, 该方法的时延性能相比较WSN融合云计算技术提高了约40%。
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
西北工业大学学报
西北工业大学学报 Engineering-Engineering (all)
CiteScore
1.30
自引率
0.00%
发文量
6201
审稿时长
12 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信