同轴旋转气体包围超空泡液体射流的热不稳定性研究

IF 1.5 4区 工程技术 Q3 MECHANICS
M. Lü, Z. Ning
{"title":"同轴旋转气体包围超空泡液体射流的热不稳定性研究","authors":"M. Lü, Z. Ning","doi":"10.1093/jom/ufab024","DOIUrl":null,"url":null,"abstract":"\n Based on the jet stability theory, under the conditions of gas rotation, fluid compressibility and supercavitation, this paper gives the mathematical model describing the thermal instability of supercavitating liquid jet surrounded by a coaxial rotary gas, and the corresponding numerical method for solving the mathematical model is proposed and verified by the data in reference. Then, this paper analyzes the effects of gas–liquid temperature differences and temperature gradients on jet instability, and studies the thermal stability of supercavitating jet. The results show that the maximum disturbance growth rate, the dominant frequency and the maximum disturbance wave numbers increase linearly with the increase of gas–liquid temperature differences. The existence of temperature gradient inside the jet makes the effects of temperature differences on jet instability more obvious. The temperature gradient will inhibit the effect of supercavitation on jet instability, while gas–liquid temperature difference will promote the effect of supercavitation on jet instability.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the thermal instability of supercavitating liquid jet surrounded by coaxial rotary gas\",\"authors\":\"M. Lü, Z. Ning\",\"doi\":\"10.1093/jom/ufab024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Based on the jet stability theory, under the conditions of gas rotation, fluid compressibility and supercavitation, this paper gives the mathematical model describing the thermal instability of supercavitating liquid jet surrounded by a coaxial rotary gas, and the corresponding numerical method for solving the mathematical model is proposed and verified by the data in reference. Then, this paper analyzes the effects of gas–liquid temperature differences and temperature gradients on jet instability, and studies the thermal stability of supercavitating jet. The results show that the maximum disturbance growth rate, the dominant frequency and the maximum disturbance wave numbers increase linearly with the increase of gas–liquid temperature differences. The existence of temperature gradient inside the jet makes the effects of temperature differences on jet instability more obvious. The temperature gradient will inhibit the effect of supercavitation on jet instability, while gas–liquid temperature difference will promote the effect of supercavitation on jet instability.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufab024\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufab024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

基于射流稳定性理论,在气体旋转、流体压缩性和超空泡条件下,给出了描述同轴旋转气体包围的超空泡液体射流热不稳定性的数学模型,并提出了相应的数学模型求解方法,并通过参考数据进行了验证。然后,分析了气液温差和温度梯度对射流不稳定性的影响,研究了超空泡射流的热稳定性。结果表明,随着气液温差的增加,最大扰动增长率、主频和最大扰动波数呈线性增加。射流内部温度梯度的存在使得温差对射流不稳定性的影响更加明显。温度梯度会抑制超空泡对射流不稳定性的影响,而气液温差会促进超空泡对喷流不稳定性的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the thermal instability of supercavitating liquid jet surrounded by coaxial rotary gas
Based on the jet stability theory, under the conditions of gas rotation, fluid compressibility and supercavitation, this paper gives the mathematical model describing the thermal instability of supercavitating liquid jet surrounded by a coaxial rotary gas, and the corresponding numerical method for solving the mathematical model is proposed and verified by the data in reference. Then, this paper analyzes the effects of gas–liquid temperature differences and temperature gradients on jet instability, and studies the thermal stability of supercavitating jet. The results show that the maximum disturbance growth rate, the dominant frequency and the maximum disturbance wave numbers increase linearly with the increase of gas–liquid temperature differences. The existence of temperature gradient inside the jet makes the effects of temperature differences on jet instability more obvious. The temperature gradient will inhibit the effect of supercavitation on jet instability, while gas–liquid temperature difference will promote the effect of supercavitation on jet instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics
Journal of Mechanics 物理-力学
CiteScore
3.20
自引率
11.80%
发文量
20
审稿时长
6 months
期刊介绍: The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信