{"title":"同轴旋转气体包围超空泡液体射流的热不稳定性研究","authors":"M. Lü, Z. Ning","doi":"10.1093/jom/ufab024","DOIUrl":null,"url":null,"abstract":"\n Based on the jet stability theory, under the conditions of gas rotation, fluid compressibility and supercavitation, this paper gives the mathematical model describing the thermal instability of supercavitating liquid jet surrounded by a coaxial rotary gas, and the corresponding numerical method for solving the mathematical model is proposed and verified by the data in reference. Then, this paper analyzes the effects of gas–liquid temperature differences and temperature gradients on jet instability, and studies the thermal stability of supercavitating jet. The results show that the maximum disturbance growth rate, the dominant frequency and the maximum disturbance wave numbers increase linearly with the increase of gas–liquid temperature differences. The existence of temperature gradient inside the jet makes the effects of temperature differences on jet instability more obvious. The temperature gradient will inhibit the effect of supercavitation on jet instability, while gas–liquid temperature difference will promote the effect of supercavitation on jet instability.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the thermal instability of supercavitating liquid jet surrounded by coaxial rotary gas\",\"authors\":\"M. Lü, Z. Ning\",\"doi\":\"10.1093/jom/ufab024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Based on the jet stability theory, under the conditions of gas rotation, fluid compressibility and supercavitation, this paper gives the mathematical model describing the thermal instability of supercavitating liquid jet surrounded by a coaxial rotary gas, and the corresponding numerical method for solving the mathematical model is proposed and verified by the data in reference. Then, this paper analyzes the effects of gas–liquid temperature differences and temperature gradients on jet instability, and studies the thermal stability of supercavitating jet. The results show that the maximum disturbance growth rate, the dominant frequency and the maximum disturbance wave numbers increase linearly with the increase of gas–liquid temperature differences. The existence of temperature gradient inside the jet makes the effects of temperature differences on jet instability more obvious. The temperature gradient will inhibit the effect of supercavitation on jet instability, while gas–liquid temperature difference will promote the effect of supercavitation on jet instability.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufab024\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufab024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
On the thermal instability of supercavitating liquid jet surrounded by coaxial rotary gas
Based on the jet stability theory, under the conditions of gas rotation, fluid compressibility and supercavitation, this paper gives the mathematical model describing the thermal instability of supercavitating liquid jet surrounded by a coaxial rotary gas, and the corresponding numerical method for solving the mathematical model is proposed and verified by the data in reference. Then, this paper analyzes the effects of gas–liquid temperature differences and temperature gradients on jet instability, and studies the thermal stability of supercavitating jet. The results show that the maximum disturbance growth rate, the dominant frequency and the maximum disturbance wave numbers increase linearly with the increase of gas–liquid temperature differences. The existence of temperature gradient inside the jet makes the effects of temperature differences on jet instability more obvious. The temperature gradient will inhibit the effect of supercavitation on jet instability, while gas–liquid temperature difference will promote the effect of supercavitation on jet instability.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.