{"title":"Berezin数不等式的改进","authors":"M. Gürdal, Hamdullah Basaran","doi":"10.31801/cfsuasmas.1160606","DOIUrl":null,"url":null,"abstract":"For a bounded linear operator $A$ on a functional Hilbert space $\\mathcal{H}\\left( \\Omega\\right) $, with normalized reproducing kernel $\\widehat {k}_{\\eta}:=\\frac{k_{\\eta}}{\\left\\Vert k_{\\eta}\\right\\Vert _{\\mathcal{H}}},$ the Berezin symbol and Berezin number are defined respectively by\n$\\widetilde{A}\\left( \\eta\\right) :=\\left\\langle A\\widehat{k}_{\\eta},\\widehat{k}_{\\eta}\\right\\rangle _{\\mathcal{H}}$ and $\\mathrm{ber}(A):=\\sup_{\\eta\\in\\Omega}\\left\\vert \\widetilde{A}{(\\eta)}\\right\\vert .$ A simple comparison of these properties produces the inequality $\\mathrm{ber}%\n\\left( A\\right) \\leq\\frac{1}{2}\\left( \\left\\Vert A\\right\\Vert_{\\mathrm{ber}}+\\left\\Vert A^{2}\\right\\Vert _{\\mathrm{ber}}^{1/2}\\right) $\n(see [17]). In this paper, we prove further inequalities relating them, and also establish some inequalities for the Berezin number of operators on functional Hilbert spaces","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advanced refinements of Berezin number inequalities\",\"authors\":\"M. Gürdal, Hamdullah Basaran\",\"doi\":\"10.31801/cfsuasmas.1160606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a bounded linear operator $A$ on a functional Hilbert space $\\\\mathcal{H}\\\\left( \\\\Omega\\\\right) $, with normalized reproducing kernel $\\\\widehat {k}_{\\\\eta}:=\\\\frac{k_{\\\\eta}}{\\\\left\\\\Vert k_{\\\\eta}\\\\right\\\\Vert _{\\\\mathcal{H}}},$ the Berezin symbol and Berezin number are defined respectively by\\n$\\\\widetilde{A}\\\\left( \\\\eta\\\\right) :=\\\\left\\\\langle A\\\\widehat{k}_{\\\\eta},\\\\widehat{k}_{\\\\eta}\\\\right\\\\rangle _{\\\\mathcal{H}}$ and $\\\\mathrm{ber}(A):=\\\\sup_{\\\\eta\\\\in\\\\Omega}\\\\left\\\\vert \\\\widetilde{A}{(\\\\eta)}\\\\right\\\\vert .$ A simple comparison of these properties produces the inequality $\\\\mathrm{ber}%\\n\\\\left( A\\\\right) \\\\leq\\\\frac{1}{2}\\\\left( \\\\left\\\\Vert A\\\\right\\\\Vert_{\\\\mathrm{ber}}+\\\\left\\\\Vert A^{2}\\\\right\\\\Vert _{\\\\mathrm{ber}}^{1/2}\\\\right) $\\n(see [17]). In this paper, we prove further inequalities relating them, and also establish some inequalities for the Berezin number of operators on functional Hilbert spaces\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1160606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1160606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Advanced refinements of Berezin number inequalities
For a bounded linear operator $A$ on a functional Hilbert space $\mathcal{H}\left( \Omega\right) $, with normalized reproducing kernel $\widehat {k}_{\eta}:=\frac{k_{\eta}}{\left\Vert k_{\eta}\right\Vert _{\mathcal{H}}},$ the Berezin symbol and Berezin number are defined respectively by
$\widetilde{A}\left( \eta\right) :=\left\langle A\widehat{k}_{\eta},\widehat{k}_{\eta}\right\rangle _{\mathcal{H}}$ and $\mathrm{ber}(A):=\sup_{\eta\in\Omega}\left\vert \widetilde{A}{(\eta)}\right\vert .$ A simple comparison of these properties produces the inequality $\mathrm{ber}%
\left( A\right) \leq\frac{1}{2}\left( \left\Vert A\right\Vert_{\mathrm{ber}}+\left\Vert A^{2}\right\Vert _{\mathrm{ber}}^{1/2}\right) $
(see [17]). In this paper, we prove further inequalities relating them, and also establish some inequalities for the Berezin number of operators on functional Hilbert spaces