{"title":"一种基于CFD的稳定偏航机动高效计算技术","authors":"G. Oud, S. Toxopeus","doi":"10.3233/isp-220001","DOIUrl":null,"url":null,"abstract":"Hydrodynamic loads acting on a ship can nowadays be reliably obtained from Computational Fluid Dynamics (CFD) techniques. In particular for the determination of the hydrodynamic coefficients of a mathematical manoeuvring model, the forces and moments on a ship sailing at a drift angle or with a yaw rate can be computed efficiently with CFD. While computations with a drift angle are relatively straightforward, computations involving a yaw rate present a challenge. This challenge consists in how to deal with the grid, the setup and the ship encountering its own wake when rotating. A solution based on a single grid setup with consistent boundary conditions and utilising a body force wake damping zone to remedy this challenge is proposed in this paper, leading to an effective, fast, and accurate method to compute hydrodynamic loads of a ship in steady yaw manoeuvres.","PeriodicalId":45800,"journal":{"name":"International Shipbuilding Progress","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A technique for efficient computation of steady yaw manoeuvres using CFD\",\"authors\":\"G. Oud, S. Toxopeus\",\"doi\":\"10.3233/isp-220001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrodynamic loads acting on a ship can nowadays be reliably obtained from Computational Fluid Dynamics (CFD) techniques. In particular for the determination of the hydrodynamic coefficients of a mathematical manoeuvring model, the forces and moments on a ship sailing at a drift angle or with a yaw rate can be computed efficiently with CFD. While computations with a drift angle are relatively straightforward, computations involving a yaw rate present a challenge. This challenge consists in how to deal with the grid, the setup and the ship encountering its own wake when rotating. A solution based on a single grid setup with consistent boundary conditions and utilising a body force wake damping zone to remedy this challenge is proposed in this paper, leading to an effective, fast, and accurate method to compute hydrodynamic loads of a ship in steady yaw manoeuvres.\",\"PeriodicalId\":45800,\"journal\":{\"name\":\"International Shipbuilding Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Shipbuilding Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/isp-220001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Shipbuilding Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/isp-220001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
A technique for efficient computation of steady yaw manoeuvres using CFD
Hydrodynamic loads acting on a ship can nowadays be reliably obtained from Computational Fluid Dynamics (CFD) techniques. In particular for the determination of the hydrodynamic coefficients of a mathematical manoeuvring model, the forces and moments on a ship sailing at a drift angle or with a yaw rate can be computed efficiently with CFD. While computations with a drift angle are relatively straightforward, computations involving a yaw rate present a challenge. This challenge consists in how to deal with the grid, the setup and the ship encountering its own wake when rotating. A solution based on a single grid setup with consistent boundary conditions and utilising a body force wake damping zone to remedy this challenge is proposed in this paper, leading to an effective, fast, and accurate method to compute hydrodynamic loads of a ship in steady yaw manoeuvres.
期刊介绍:
The journal International Shipbuilding Progress was founded in 1954. Each year four issues appear (in April, July, September and December). Publications submitted to ISP should describe scientific work of high international standards, advancing subjects related to the field of Marine Technology, such as: conceptual design structural design hydromechanics and dynamics maritime engineering production of all types of ships production of all other objects intended for marine use shipping science and all directly related subjects offshore engineering in relation to the marine environment ocean engineering subjects in relation to the marine environment