{"title":"$mathbb的一些子群{F}_q^*$和mathbb中$x^{2^nd}-1的显式因子{F}_q[x]$","authors":"Manjit Singh","doi":"10.22108/TOC.2019.114742.1612","DOIUrl":null,"url":null,"abstract":"Let $mathcal{S}_q$ denote the group of all square elements in the multiplicative group $mathbb{F}_q^*$ of a finite field $mathbb{F}_q$ of odd characteristic containing $q$ elements. Let $mathcal{O}_q$ be the set of all odd order elements of $mathbb{F}_q^*$. Then $mathcal{O}_q$ turns up as a subgroup of $mathcal{S}_q$. In this paper, we show that $mathcal{O}_q=langle4rangle$ if $q=2t+1$ and, $mathcal{O}_q=langle trangle $ if $q=4t+1$, where $q$ and $t$ are odd primes. Further, we determine the coefficients of irreducible factors of $x^{2^nt}-1$ using generators of these special subgroups of $mathbb{F}_q^*$","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"8 1","pages":"23-33"},"PeriodicalIF":0.6000,"publicationDate":"2019-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some subgroups of $mathbb{F}_q^*$ and explicit factors of $x^{2^nd}-1 in mathbb{F}_q[x]$\",\"authors\":\"Manjit Singh\",\"doi\":\"10.22108/TOC.2019.114742.1612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $mathcal{S}_q$ denote the group of all square elements in the multiplicative group $mathbb{F}_q^*$ of a finite field $mathbb{F}_q$ of odd characteristic containing $q$ elements. Let $mathcal{O}_q$ be the set of all odd order elements of $mathbb{F}_q^*$. Then $mathcal{O}_q$ turns up as a subgroup of $mathcal{S}_q$. In this paper, we show that $mathcal{O}_q=langle4rangle$ if $q=2t+1$ and, $mathcal{O}_q=langle trangle $ if $q=4t+1$, where $q$ and $t$ are odd primes. Further, we determine the coefficients of irreducible factors of $x^{2^nt}-1$ using generators of these special subgroups of $mathbb{F}_q^*$\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"8 1\",\"pages\":\"23-33\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2019.114742.1612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.114742.1612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some subgroups of $mathbb{F}_q^*$ and explicit factors of $x^{2^nd}-1 in mathbb{F}_q[x]$
Let $mathcal{S}_q$ denote the group of all square elements in the multiplicative group $mathbb{F}_q^*$ of a finite field $mathbb{F}_q$ of odd characteristic containing $q$ elements. Let $mathcal{O}_q$ be the set of all odd order elements of $mathbb{F}_q^*$. Then $mathcal{O}_q$ turns up as a subgroup of $mathcal{S}_q$. In this paper, we show that $mathcal{O}_q=langle4rangle$ if $q=2t+1$ and, $mathcal{O}_q=langle trangle $ if $q=4t+1$, where $q$ and $t$ are odd primes. Further, we determine the coefficients of irreducible factors of $x^{2^nt}-1$ using generators of these special subgroups of $mathbb{F}_q^*$