{"title":"基于N结构的次邻域","authors":"M. Norouzi, A. Asadi, Y. Jun","doi":"10.52737/18291163-2018.10.10-1-15","DOIUrl":null,"url":null,"abstract":"The notion of a subnexus based on ${\\mathcal{N}}$-function (briefly, ${\\mathcal{N}}$-subnexus) is introduced, and related properties are investigated. Also, the notions of ${\\mathcal{N}}$-subnexus of type $(\\alpha, \\beta)$, where $(\\alpha, \\beta)$ is $(\\in, \\in)$, $(\\in, q)$, $(\\in, \\in\\! \\vee \\, {q})$, $(q, \\in)$, $(q,q)$, $(q, \\in\\! \\vee \\, {q})$, $(\\overline{\\in}, \\overline{\\in})$ and $(\\overline{\\in}, \\overline{\\in} \\vee \\overline{q})$, are introduced, and their basic properties are investigated. Conditions for an ${\\mathcal{N}}$-structure to be an ${\\mathcal{N}}$-subnexus of type $(q, \\in\\! \\vee \\, {q})$ are given, and characterizations of ${\\mathcal{N}}$-subnexus of type $(\\in, \\in\\! \\vee \\, {q})$ and $(\\overline{\\in}, \\overline{\\in} \\vee \\overline{q})$ are provided. Homomorphic image and preimage of ${\\mathcal{N}}$-subnexus are discussed.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subnexuses Based on N-structures\",\"authors\":\"M. Norouzi, A. Asadi, Y. Jun\",\"doi\":\"10.52737/18291163-2018.10.10-1-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of a subnexus based on ${\\\\mathcal{N}}$-function (briefly, ${\\\\mathcal{N}}$-subnexus) is introduced, and related properties are investigated. Also, the notions of ${\\\\mathcal{N}}$-subnexus of type $(\\\\alpha, \\\\beta)$, where $(\\\\alpha, \\\\beta)$ is $(\\\\in, \\\\in)$, $(\\\\in, q)$, $(\\\\in, \\\\in\\\\! \\\\vee \\\\, {q})$, $(q, \\\\in)$, $(q,q)$, $(q, \\\\in\\\\! \\\\vee \\\\, {q})$, $(\\\\overline{\\\\in}, \\\\overline{\\\\in})$ and $(\\\\overline{\\\\in}, \\\\overline{\\\\in} \\\\vee \\\\overline{q})$, are introduced, and their basic properties are investigated. Conditions for an ${\\\\mathcal{N}}$-structure to be an ${\\\\mathcal{N}}$-subnexus of type $(q, \\\\in\\\\! \\\\vee \\\\, {q})$ are given, and characterizations of ${\\\\mathcal{N}}$-subnexus of type $(\\\\in, \\\\in\\\\! \\\\vee \\\\, {q})$ and $(\\\\overline{\\\\in}, \\\\overline{\\\\in} \\\\vee \\\\overline{q})$ are provided. Homomorphic image and preimage of ${\\\\mathcal{N}}$-subnexus are discussed.\",\"PeriodicalId\":42323,\"journal\":{\"name\":\"Armenian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Armenian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52737/18291163-2018.10.10-1-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2018.10.10-1-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The notion of a subnexus based on ${\mathcal{N}}$-function (briefly, ${\mathcal{N}}$-subnexus) is introduced, and related properties are investigated. Also, the notions of ${\mathcal{N}}$-subnexus of type $(\alpha, \beta)$, where $(\alpha, \beta)$ is $(\in, \in)$, $(\in, q)$, $(\in, \in\! \vee \, {q})$, $(q, \in)$, $(q,q)$, $(q, \in\! \vee \, {q})$, $(\overline{\in}, \overline{\in})$ and $(\overline{\in}, \overline{\in} \vee \overline{q})$, are introduced, and their basic properties are investigated. Conditions for an ${\mathcal{N}}$-structure to be an ${\mathcal{N}}$-subnexus of type $(q, \in\! \vee \, {q})$ are given, and characterizations of ${\mathcal{N}}$-subnexus of type $(\in, \in\! \vee \, {q})$ and $(\overline{\in}, \overline{\in} \vee \overline{q})$ are provided. Homomorphic image and preimage of ${\mathcal{N}}$-subnexus are discussed.