{"title":"具有有限自同构群的K3曲面的一个图集","authors":"X. Roulleau","doi":"10.46298/epiga.2022.6286","DOIUrl":null,"url":null,"abstract":"We study the geometry of the K3 surfaces $X$ with a finite number\nautomorphisms and Picard number $\\geq 3$. We describe these surfaces classified\nby Nikulin and Vinberg as double covers of simpler surfaces or embedded in a\nprojective space. We study moreover the configurations of their finite set of\n$(-2)$-curves.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An atlas of K3 surfaces with finite automorphism group\",\"authors\":\"X. Roulleau\",\"doi\":\"10.46298/epiga.2022.6286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the geometry of the K3 surfaces $X$ with a finite number\\nautomorphisms and Picard number $\\\\geq 3$. We describe these surfaces classified\\nby Nikulin and Vinberg as double covers of simpler surfaces or embedded in a\\nprojective space. We study moreover the configurations of their finite set of\\n$(-2)$-curves.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2022.6286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2022.6286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
An atlas of K3 surfaces with finite automorphism group
We study the geometry of the K3 surfaces $X$ with a finite number
automorphisms and Picard number $\geq 3$. We describe these surfaces classified
by Nikulin and Vinberg as double covers of simpler surfaces or embedded in a
projective space. We study moreover the configurations of their finite set of
$(-2)$-curves.