结合剂喷射打印件烧结变形建模的计算框架

Q3 Engineering
Basil J. Paudel, D. Conover, Jung‐Kun Lee, A. To
{"title":"结合剂喷射打印件烧结变形建模的计算框架","authors":"Basil J. Paudel, D. Conover, Jung‐Kun Lee, A. To","doi":"10.1142/s242491302142008x","DOIUrl":null,"url":null,"abstract":"Sintering of binder jet 3D printed (BJ3DP) parts results in significant nonlinear distortion with typical shrinkage value of 5–20%, which makes design for BJ3DP and post-machining difficult. In this work, a computational modeling framework with calibration and validation procedure is developed to simulate distortion during sintering of BJ3DP parts accurately for the first time. The computational model employs the finite element analysis with a viscoplastic constitutive model that accounts for effects of gravity and friction. A calibration procedure is proposed to obtain values of different model parameters systematically through dilatometric, gravity bending, and grain growth experiments. For model validation, four bridges with different spans and a second part with a circular hole and two free overhangs are designed. The calibration procedure is applied to develop a computational model for sintered 316L stainless steel BJ3DP parts. The displacements at various locations on the sintered parts are simulated using the calibrated model and are found to have errors less than 3.5% compared to those obtained by experiment.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Computational Framework for Modeling Distortion During Sintering of Binder Jet Printed Parts\",\"authors\":\"Basil J. Paudel, D. Conover, Jung‐Kun Lee, A. To\",\"doi\":\"10.1142/s242491302142008x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sintering of binder jet 3D printed (BJ3DP) parts results in significant nonlinear distortion with typical shrinkage value of 5–20%, which makes design for BJ3DP and post-machining difficult. In this work, a computational modeling framework with calibration and validation procedure is developed to simulate distortion during sintering of BJ3DP parts accurately for the first time. The computational model employs the finite element analysis with a viscoplastic constitutive model that accounts for effects of gravity and friction. A calibration procedure is proposed to obtain values of different model parameters systematically through dilatometric, gravity bending, and grain growth experiments. For model validation, four bridges with different spans and a second part with a circular hole and two free overhangs are designed. The calibration procedure is applied to develop a computational model for sintered 316L stainless steel BJ3DP parts. The displacements at various locations on the sintered parts are simulated using the calibrated model and are found to have errors less than 3.5% compared to those obtained by experiment.\",\"PeriodicalId\":36070,\"journal\":{\"name\":\"Journal of Micromechanics and Molecular Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Molecular Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s242491302142008x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s242491302142008x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

粘结剂喷射3D打印(BJ3DP)零件在烧结过程中会产生明显的非线性变形,典型的收缩值为5-20%,这给BJ3DP的设计和后期加工带来了困难。在这项工作中,开发了一个具有校准和验证程序的计算建模框架,第一次精确地模拟了BJ3DP零件烧结过程中的变形。计算模型采用考虑重力和摩擦影响的粘塑性本构模型进行有限元分析。提出了一种通过膨胀、重力弯曲和晶粒生长实验系统地获得不同模型参数值的校准程序。为了验证模型,设计了4座不同跨径的桥梁,第二部分设计了一个圆孔和两个自由悬挑。应用标定程序建立了烧结316L不锈钢BJ3DP零件的计算模型。利用标定后的模型对烧结零件各位置的位移进行了模拟,与实验结果相比误差小于3.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computational Framework for Modeling Distortion During Sintering of Binder Jet Printed Parts
Sintering of binder jet 3D printed (BJ3DP) parts results in significant nonlinear distortion with typical shrinkage value of 5–20%, which makes design for BJ3DP and post-machining difficult. In this work, a computational modeling framework with calibration and validation procedure is developed to simulate distortion during sintering of BJ3DP parts accurately for the first time. The computational model employs the finite element analysis with a viscoplastic constitutive model that accounts for effects of gravity and friction. A calibration procedure is proposed to obtain values of different model parameters systematically through dilatometric, gravity bending, and grain growth experiments. For model validation, four bridges with different spans and a second part with a circular hole and two free overhangs are designed. The calibration procedure is applied to develop a computational model for sintered 316L stainless steel BJ3DP parts. The displacements at various locations on the sintered parts are simulated using the calibrated model and are found to have errors less than 3.5% compared to those obtained by experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Molecular Physics
Journal of Micromechanics and Molecular Physics Materials Science-Polymers and Plastics
CiteScore
3.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信