一种改进的Picard迭代法求解分数阶最优控制问题

IF 0.4 Q4 MATHEMATICS
A. Ghorbani
{"title":"一种改进的Picard迭代法求解分数阶最优控制问题","authors":"A. Ghorbani","doi":"10.30495/JME.V15I0.1971","DOIUrl":null,"url":null,"abstract":"An effective modified of the Picard iteration method ( PIM ) is presented for solving the linear and nonlinear fractional optimal control problems ( FOCP ) in the Caputo sense. Here, the control function is first approximated by a finite series with unknown coefficients. Then the modified PIM is utilized to simulate the resulting fractional equations. Finally, the unknown coefficients could be computed by applying an optimization procedure. Some test examples are given to show the accuracy and validity of the method.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified Picard iteration method to solve fractional optimal control problems\",\"authors\":\"A. Ghorbani\",\"doi\":\"10.30495/JME.V15I0.1971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective modified of the Picard iteration method ( PIM ) is presented for solving the linear and nonlinear fractional optimal control problems ( FOCP ) in the Caputo sense. Here, the control function is first approximated by a finite series with unknown coefficients. Then the modified PIM is utilized to simulate the resulting fractional equations. Finally, the unknown coefficients could be computed by applying an optimization procedure. Some test examples are given to show the accuracy and validity of the method.\",\"PeriodicalId\":43745,\"journal\":{\"name\":\"Journal of Mathematical Extension\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Extension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30495/JME.V15I0.1971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V15I0.1971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

针对Caputo意义上的线性和非线性分式最优控制问题,提出了一种有效的改进Picard迭代法。这里,控制函数首先由具有未知系数的有限级数来近似。然后利用改进的PIM来模拟得到的分数方程。最后,可以通过应用优化程序来计算未知系数。通过实例验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified Picard iteration method to solve fractional optimal control problems
An effective modified of the Picard iteration method ( PIM ) is presented for solving the linear and nonlinear fractional optimal control problems ( FOCP ) in the Caputo sense. Here, the control function is first approximated by a finite series with unknown coefficients. Then the modified PIM is utilized to simulate the resulting fractional equations. Finally, the unknown coefficients could be computed by applying an optimization procedure. Some test examples are given to show the accuracy and validity of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
68
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信