Mahboobeh Sheikhi, S. Sina, M. Karimipourfard, Fereshteh Khodadadi Shoushtari
{"title":"基于深度神经网络的单能量或超低剂量CT扫描中肾结石成分自动识别研究","authors":"Mahboobeh Sheikhi, S. Sina, M. Karimipourfard, Fereshteh Khodadadi Shoushtari","doi":"10.5812/iranjradiol-134454","DOIUrl":null,"url":null,"abstract":"Background: Dual-energy computed tomography (DECT) scan is a non-invasive method for the in vivo identification of renal stone composition. However, DECT scanners have several demerits, including high cost, low accessibility, and high radiation dose to patients. Objectives: The present study aimed to investigate the efficacy of deep neural networks in the classification of renal stone types using single-energy CT imaging. The Taguchi method was used for the optimization of hyperparameters. Patients and Methods: A total of 146 pure renal stone samples were first surgically collected from the patients. The stones were then inserted into a Rando phantom and scanned using a DECT scanner. An ultra-low-dose CT scan was acquired to determine the stone position prior to the DECT scan. The result of chemical analysis was used as the gold standard for determining the stone composition throughout the study. Several neural networks, including ResNet-50, ResNet-18, GoogLeNet, and VGG-19, were used to classify the stone images into three composition groups, including uric acid, calcium oxalate, and cystine. Moreover, the Taguchi method was employed to optimize the network hyperparameters. The signal-to-noise ratio (SNR) was also analyzed to determine the optimal arrangement. Results: In this study, CT scans of 53 uric acid, 55 calcium oxalate, and 38 cystine stones, with diameters of 1 - 3 mm, were acquired. The deep learning findings showed that the ResNet-18 network had the highest accuracy for 120-kVp and 135-kVp CT scanning, while ResNet-50 performed better in 80-kVp CT scanning. The ResNet-50 network showed the best performance of all networks in predicting stone types in 80-kVp scanning, as indicated by its high sensitivity, specificity, and precision. Conclusion: The present results indicated that our deep learning approach could be used for the in vivo determination of renal stone types. Moreover, low-dose or ultra-low-dose single-energy CT scanning is more widely accessible and safer in terms of radiation exposure.","PeriodicalId":50273,"journal":{"name":"Iranian Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Study Toward Automatic Identification of Renal Stone Composition in Single-energy or Ultra-low-dose CT Scan Using Deep Neural Networks\",\"authors\":\"Mahboobeh Sheikhi, S. Sina, M. Karimipourfard, Fereshteh Khodadadi Shoushtari\",\"doi\":\"10.5812/iranjradiol-134454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Dual-energy computed tomography (DECT) scan is a non-invasive method for the in vivo identification of renal stone composition. However, DECT scanners have several demerits, including high cost, low accessibility, and high radiation dose to patients. Objectives: The present study aimed to investigate the efficacy of deep neural networks in the classification of renal stone types using single-energy CT imaging. The Taguchi method was used for the optimization of hyperparameters. Patients and Methods: A total of 146 pure renal stone samples were first surgically collected from the patients. The stones were then inserted into a Rando phantom and scanned using a DECT scanner. An ultra-low-dose CT scan was acquired to determine the stone position prior to the DECT scan. The result of chemical analysis was used as the gold standard for determining the stone composition throughout the study. Several neural networks, including ResNet-50, ResNet-18, GoogLeNet, and VGG-19, were used to classify the stone images into three composition groups, including uric acid, calcium oxalate, and cystine. Moreover, the Taguchi method was employed to optimize the network hyperparameters. The signal-to-noise ratio (SNR) was also analyzed to determine the optimal arrangement. Results: In this study, CT scans of 53 uric acid, 55 calcium oxalate, and 38 cystine stones, with diameters of 1 - 3 mm, were acquired. The deep learning findings showed that the ResNet-18 network had the highest accuracy for 120-kVp and 135-kVp CT scanning, while ResNet-50 performed better in 80-kVp CT scanning. The ResNet-50 network showed the best performance of all networks in predicting stone types in 80-kVp scanning, as indicated by its high sensitivity, specificity, and precision. Conclusion: The present results indicated that our deep learning approach could be used for the in vivo determination of renal stone types. Moreover, low-dose or ultra-low-dose single-energy CT scanning is more widely accessible and safer in terms of radiation exposure.\",\"PeriodicalId\":50273,\"journal\":{\"name\":\"Iranian Journal of Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5812/iranjradiol-134454\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5812/iranjradiol-134454","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A Study Toward Automatic Identification of Renal Stone Composition in Single-energy or Ultra-low-dose CT Scan Using Deep Neural Networks
Background: Dual-energy computed tomography (DECT) scan is a non-invasive method for the in vivo identification of renal stone composition. However, DECT scanners have several demerits, including high cost, low accessibility, and high radiation dose to patients. Objectives: The present study aimed to investigate the efficacy of deep neural networks in the classification of renal stone types using single-energy CT imaging. The Taguchi method was used for the optimization of hyperparameters. Patients and Methods: A total of 146 pure renal stone samples were first surgically collected from the patients. The stones were then inserted into a Rando phantom and scanned using a DECT scanner. An ultra-low-dose CT scan was acquired to determine the stone position prior to the DECT scan. The result of chemical analysis was used as the gold standard for determining the stone composition throughout the study. Several neural networks, including ResNet-50, ResNet-18, GoogLeNet, and VGG-19, were used to classify the stone images into three composition groups, including uric acid, calcium oxalate, and cystine. Moreover, the Taguchi method was employed to optimize the network hyperparameters. The signal-to-noise ratio (SNR) was also analyzed to determine the optimal arrangement. Results: In this study, CT scans of 53 uric acid, 55 calcium oxalate, and 38 cystine stones, with diameters of 1 - 3 mm, were acquired. The deep learning findings showed that the ResNet-18 network had the highest accuracy for 120-kVp and 135-kVp CT scanning, while ResNet-50 performed better in 80-kVp CT scanning. The ResNet-50 network showed the best performance of all networks in predicting stone types in 80-kVp scanning, as indicated by its high sensitivity, specificity, and precision. Conclusion: The present results indicated that our deep learning approach could be used for the in vivo determination of renal stone types. Moreover, low-dose or ultra-low-dose single-energy CT scanning is more widely accessible and safer in terms of radiation exposure.
期刊介绍:
The Iranian Journal of Radiology is the official journal of Tehran University of Medical Sciences and the Iranian Society of Radiology. It is a scientific forum dedicated primarily to the topics relevant to radiology and allied sciences of the developing countries, which have been neglected or have received little attention in the Western medical literature.
This journal particularly welcomes manuscripts which deal with radiology and imaging from geographic regions wherein problems regarding economic, social, ethnic and cultural parameters affecting prevalence and course of the illness are taken into consideration.
The Iranian Journal of Radiology has been launched in order to interchange information in the field of radiology and other related scientific spheres. In accordance with the objective of developing the scientific ability of the radiological population and other related scientific fields, this journal publishes research articles, evidence-based review articles, and case reports focused on regional tropics.
Iranian Journal of Radiology operates in agreement with the below principles in compliance with continuous quality improvement:
1-Increasing the satisfaction of the readers, authors, staff, and co-workers.
2-Improving the scientific content and appearance of the journal.
3-Advancing the scientific validity of the journal both nationally and internationally.
Such basics are accomplished only by aggregative effort and reciprocity of the radiological population and related sciences, authorities, and staff of the journal.