序列生成张量网络状态的典型相关长度

IF 9.3 Q1 PHYSICS, APPLIED
D. Haag, F. Baccari, Georgios Styliaris
{"title":"序列生成张量网络状态的典型相关长度","authors":"D. Haag, F. Baccari, Georgios Styliaris","doi":"10.1103/PRXQuantum.4.030330","DOIUrl":null,"url":null,"abstract":"The complexity of quantum many-body systems is manifested in the vast diversity of their correlations, making it challenging to distinguish the generic from the atypical features. This can be addressed by analyzing correlations through ensembles of random states, chosen to faithfully embody the relevant physical properties. Here, we focus on spins with local interactions, whose correlations are extremely well captured by tensor network states. Adopting an operational perspective, we define ensembles of random tensor network states in one and two spatial dimensions that admit a sequential generation. As such, they directly correspond to outputs of quantum circuits with a sequential architecture and random gates. In one spatial dimension, the ensemble explores the entire family of matrix product states, while in two spatial dimensions, it corresponds to random isometric tensor network states. We extract the scaling behavior of the average correlations between two subsystems as a function of their distance. Using elementary concentration results, we then deduce the typical case for measures of correlation such as the von Neumann mutual information and a measure arising from the Hilbert-Schmidt norm. We find for all considered cases that the typical behavior is an exponential decay (for both one and two spatial dimensions). We observe the consistent emergence of a correlation length that depends only on the underlying spatial dimension and not the considered measure. Remarkably, increasing the bond dimension leads to a higher correlation length in one spatial dimension but has the opposite effect in two spatial dimensions.","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Typical Correlation Length of Sequentially Generated Tensor Network States\",\"authors\":\"D. Haag, F. Baccari, Georgios Styliaris\",\"doi\":\"10.1103/PRXQuantum.4.030330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity of quantum many-body systems is manifested in the vast diversity of their correlations, making it challenging to distinguish the generic from the atypical features. This can be addressed by analyzing correlations through ensembles of random states, chosen to faithfully embody the relevant physical properties. Here, we focus on spins with local interactions, whose correlations are extremely well captured by tensor network states. Adopting an operational perspective, we define ensembles of random tensor network states in one and two spatial dimensions that admit a sequential generation. As such, they directly correspond to outputs of quantum circuits with a sequential architecture and random gates. In one spatial dimension, the ensemble explores the entire family of matrix product states, while in two spatial dimensions, it corresponds to random isometric tensor network states. We extract the scaling behavior of the average correlations between two subsystems as a function of their distance. Using elementary concentration results, we then deduce the typical case for measures of correlation such as the von Neumann mutual information and a measure arising from the Hilbert-Schmidt norm. We find for all considered cases that the typical behavior is an exponential decay (for both one and two spatial dimensions). We observe the consistent emergence of a correlation length that depends only on the underlying spatial dimension and not the considered measure. Remarkably, increasing the bond dimension leads to a higher correlation length in one spatial dimension but has the opposite effect in two spatial dimensions.\",\"PeriodicalId\":74587,\"journal\":{\"name\":\"PRX quantum : a Physical Review journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX quantum : a Physical Review journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PRXQuantum.4.030330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PRXQuantum.4.030330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

量子多体系统的复杂性表现在其相关性的巨大多样性上,这使得区分一般特征和非典型特征具有挑战性。这可以通过分析随机状态集合的相关性来解决,随机状态集合被选择来忠实地体现相关的物理性质。在这里,我们关注具有局部相互作用的自旋,张量网络状态非常好地捕捉到了它们的相关性。从操作的角度来看,我们在一个和两个空间维度上定义了允许顺序生成的随机张量网络状态的集合。因此,它们直接对应于具有顺序结构和随机门的量子电路的输出。在一个空间维度上,集合探索整个矩阵乘积状态族,而在两个空间维度中,它对应于随机等距张量网络状态。我们提取了两个子系统之间平均相关性的缩放行为,作为它们距离的函数。然后,利用初等集中结果,我们推导出相关测度的典型情况,如冯-诺依曼互信息和希尔伯特-施密特范数产生的测度。我们发现,对于所有考虑的情况,典型的行为是指数衰减(对于一维和二维)。我们观察到相关性长度的一致出现,该长度仅取决于潜在的空间维度,而不取决于所考虑的度量。值得注意的是,增加键维数在一个空间维度上会导致更高的相关长度,但在两个空间维度中会产生相反的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Typical Correlation Length of Sequentially Generated Tensor Network States

Typical Correlation Length of Sequentially Generated Tensor Network States
The complexity of quantum many-body systems is manifested in the vast diversity of their correlations, making it challenging to distinguish the generic from the atypical features. This can be addressed by analyzing correlations through ensembles of random states, chosen to faithfully embody the relevant physical properties. Here, we focus on spins with local interactions, whose correlations are extremely well captured by tensor network states. Adopting an operational perspective, we define ensembles of random tensor network states in one and two spatial dimensions that admit a sequential generation. As such, they directly correspond to outputs of quantum circuits with a sequential architecture and random gates. In one spatial dimension, the ensemble explores the entire family of matrix product states, while in two spatial dimensions, it corresponds to random isometric tensor network states. We extract the scaling behavior of the average correlations between two subsystems as a function of their distance. Using elementary concentration results, we then deduce the typical case for measures of correlation such as the von Neumann mutual information and a measure arising from the Hilbert-Schmidt norm. We find for all considered cases that the typical behavior is an exponential decay (for both one and two spatial dimensions). We observe the consistent emergence of a correlation length that depends only on the underlying spatial dimension and not the considered measure. Remarkably, increasing the bond dimension leads to a higher correlation length in one spatial dimension but has the opposite effect in two spatial dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信