最后通道渗透中的风险风险:统一的方法

IF 1.3 Q2 STATISTICS & PROBABILITY
Probability Surveys Pub Date : 2021-06-17 DOI:10.1214/22-PS4
Duncan Dauvergne, M. Nica, B'alint Vir'ag
{"title":"最后通道渗透中的风险风险:统一的方法","authors":"Duncan Dauvergne, M. Nica, B'alint Vir'ag","doi":"10.1214/22-PS4","DOIUrl":null,"url":null,"abstract":": We present a version of the RSK correspondence based on the Pitman transform and geometric considerations. This version unifies ordinary RSK, dual RSK and continuous RSK. We show that this version is both a bijection and an isometry, two crucial properties for taking limits of last passage percolation models. We use the bijective property to give a non-computational proof that dual RSK maps Bernoulli walks to nonintersecting Bernoulli walks.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"RSK in last passage percolation: a unified approach\",\"authors\":\"Duncan Dauvergne, M. Nica, B'alint Vir'ag\",\"doi\":\"10.1214/22-PS4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": We present a version of the RSK correspondence based on the Pitman transform and geometric considerations. This version unifies ordinary RSK, dual RSK and continuous RSK. We show that this version is both a bijection and an isometry, two crucial properties for taking limits of last passage percolation models. We use the bijective property to give a non-computational proof that dual RSK maps Bernoulli walks to nonintersecting Bernoulli walks.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-PS4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-PS4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

:我们提出了基于皮特曼变换和几何考虑的RSK对应关系的一个版本。该版本包括普通RSK、双RSK和连续RSK。我们证明了这个版本是双射和等距的,这两个性质对于取最后通道渗流模型的极限是至关重要的。我们利用双射性质给出了对偶RSK将伯努利行走映射到不相交的伯努利走的非计算证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RSK in last passage percolation: a unified approach
: We present a version of the RSK correspondence based on the Pitman transform and geometric considerations. This version unifies ordinary RSK, dual RSK and continuous RSK. We show that this version is both a bijection and an isometry, two crucial properties for taking limits of last passage percolation models. We use the bijective property to give a non-computational proof that dual RSK maps Bernoulli walks to nonintersecting Bernoulli walks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信