{"title":"基于形状理论和符号动力学的链递归集的局部化","authors":"M. Shoptrajanov","doi":"10.1515/taa-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract The main aim of this paper is localization of the chain recurrent set in shape theoretical framework. Namely, using the intrinsic approach to shape from [1] we present a result which claims that under certain conditions the chain recurrent set preserves local shape properties. We proved this result in [2] using the notion of a proper covering. Here we give a new proof using the Lebesque number for a covering and verify this result by investigating the symbolical image of a couple of systems of differential equations following [3].","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"7 1","pages":"13 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2019-0002","citationCount":"1","resultStr":"{\"title\":\"Localization of the Chain Recurrent set using Shape theory and Symbolical Dynamics\",\"authors\":\"M. Shoptrajanov\",\"doi\":\"10.1515/taa-2019-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main aim of this paper is localization of the chain recurrent set in shape theoretical framework. Namely, using the intrinsic approach to shape from [1] we present a result which claims that under certain conditions the chain recurrent set preserves local shape properties. We proved this result in [2] using the notion of a proper covering. Here we give a new proof using the Lebesque number for a covering and verify this result by investigating the symbolical image of a couple of systems of differential equations following [3].\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"7 1\",\"pages\":\"13 - 28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/taa-2019-0002\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/taa-2019-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Localization of the Chain Recurrent set using Shape theory and Symbolical Dynamics
Abstract The main aim of this paper is localization of the chain recurrent set in shape theoretical framework. Namely, using the intrinsic approach to shape from [1] we present a result which claims that under certain conditions the chain recurrent set preserves local shape properties. We proved this result in [2] using the notion of a proper covering. Here we give a new proof using the Lebesque number for a covering and verify this result by investigating the symbolical image of a couple of systems of differential equations following [3].