涡流探测器对水力旋流器分流比和分离性能影响的数值分析

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
V. Hashe, T. Kunene
{"title":"涡流探测器对水力旋流器分流比和分离性能影响的数值分析","authors":"V. Hashe, T. Kunene","doi":"10.3390/mca28020050","DOIUrl":null,"url":null,"abstract":"Hydrocyclones are devices used in numerous areas of the chemical, food, and mineral industries to separate fine particles. A hydrocyclone with a diameter of d50 mm was modeled using the commercial Simcenter STAR-CCM+13 computational fluid dynamics (CFD) simulation package. The numerical methods confirmed the results of the different parameters, such as the properties of the volume fraction, based on CFD simulations. Reynolds Stress Model (RSM) and the combined technique of volume of fluid (VOF) and discrete element model (DEM) for water and air models were selected to evaluate semi-implicit pressure-linked equations and combine the momentum with continuity laws to obtain derivatives of the pressure. The targeted particle sizes were in a range of 8–100 microns for a dewatering application. The depth of the vortex finder was varied to 20 mm, 30 mm, and 35 mm to observe the effects of pressure drop and separation efficiency. The split water ratio increased toward a 50% split of overflow and underflow rates as the length of the vortex finder increased. It results in better particle separation when there is a high injection rate at the inlet. The tangential and axial velocities increased as the vortex finder length increased. As the depth of the vortex finder length increased, the time for particle re-entrainment into the underflow stream increased, and the separation efficiency improved.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of the Effect of the Vortex Finder on the Hydrocyclone’s Split Water Ratio and Separation Performance\",\"authors\":\"V. Hashe, T. Kunene\",\"doi\":\"10.3390/mca28020050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrocyclones are devices used in numerous areas of the chemical, food, and mineral industries to separate fine particles. A hydrocyclone with a diameter of d50 mm was modeled using the commercial Simcenter STAR-CCM+13 computational fluid dynamics (CFD) simulation package. The numerical methods confirmed the results of the different parameters, such as the properties of the volume fraction, based on CFD simulations. Reynolds Stress Model (RSM) and the combined technique of volume of fluid (VOF) and discrete element model (DEM) for water and air models were selected to evaluate semi-implicit pressure-linked equations and combine the momentum with continuity laws to obtain derivatives of the pressure. The targeted particle sizes were in a range of 8–100 microns for a dewatering application. The depth of the vortex finder was varied to 20 mm, 30 mm, and 35 mm to observe the effects of pressure drop and separation efficiency. The split water ratio increased toward a 50% split of overflow and underflow rates as the length of the vortex finder increased. It results in better particle separation when there is a high injection rate at the inlet. The tangential and axial velocities increased as the vortex finder length increased. As the depth of the vortex finder length increased, the time for particle re-entrainment into the underflow stream increased, and the separation efficiency improved.\",\"PeriodicalId\":53224,\"journal\":{\"name\":\"Mathematical & Computational Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical & Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca28020050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

水力旋流器是一种用于化学、食品和矿物工业许多领域的设备,用于分离细颗粒。使用商业Simcenter STAR-CCM+13计算流体动力学(CFD)模拟软件包对直径为d50mm的水力旋流器进行建模。基于CFD模拟,数值方法证实了不同参数的结果,如体积分数的性质。选择雷诺应力模型(RSM)以及水和空气模型的流体体积(VOF)和离散元模型(DEM)相结合的技术来评估半隐式压力连接方程,并将动量与连续性定律相结合来获得压力的导数。脱水应用的目标颗粒尺寸在8-100微米的范围内。将涡流探测器的深度改变为20毫米、30毫米和35毫米,以观察压降和分离效率的影响。随着涡流探测器长度的增加,分流水比向溢流率和底流率的50%分流方向增加。当在入口处具有高注入速率时,其导致更好的颗粒分离。切向和轴向速度随着涡流探测器长度的增加而增加。随着涡流探测器长度的深度增加,颗粒再次夹带到底流中的时间增加,分离效率提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Analysis of the Effect of the Vortex Finder on the Hydrocyclone’s Split Water Ratio and Separation Performance
Hydrocyclones are devices used in numerous areas of the chemical, food, and mineral industries to separate fine particles. A hydrocyclone with a diameter of d50 mm was modeled using the commercial Simcenter STAR-CCM+13 computational fluid dynamics (CFD) simulation package. The numerical methods confirmed the results of the different parameters, such as the properties of the volume fraction, based on CFD simulations. Reynolds Stress Model (RSM) and the combined technique of volume of fluid (VOF) and discrete element model (DEM) for water and air models were selected to evaluate semi-implicit pressure-linked equations and combine the momentum with continuity laws to obtain derivatives of the pressure. The targeted particle sizes were in a range of 8–100 microns for a dewatering application. The depth of the vortex finder was varied to 20 mm, 30 mm, and 35 mm to observe the effects of pressure drop and separation efficiency. The split water ratio increased toward a 50% split of overflow and underflow rates as the length of the vortex finder increased. It results in better particle separation when there is a high injection rate at the inlet. The tangential and axial velocities increased as the vortex finder length increased. As the depth of the vortex finder length increased, the time for particle re-entrainment into the underflow stream increased, and the separation efficiency improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信