{"title":"弱非局部边值问题及其在地质学中的应用","authors":"D. Maroncelli, E. Collins","doi":"10.7153/DEA-2021-13-12","DOIUrl":null,"url":null,"abstract":"In many cases, groundwater flow in an unconfined aquifer can be simplified to a one-dimensional Sturm-Liouville model of the form: \\begin{equation*} x''(t)+\\lambda x(t)=h(t)+\\varepsilon f(x(t)),\\hspace{.1in}t\\in(0,\\pi) \\end{equation*} subject to non-local boundary conditions \\begin{equation*} x(0)=h_1+\\varepsilon\\eta_1(x)\\text{ and } x(\\pi)=h_2+\\varepsilon\\eta_2(x). \\end{equation*} In this paper, we study the existence of solutions to the above Sturm-Liouville problem under the assumption that $\\varepsilon$ is a small parameter. Our method will be analytical, utilizing the implicit function theorem and its generalizations.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weakly nonlocal boundary value problems with application to geology\",\"authors\":\"D. Maroncelli, E. Collins\",\"doi\":\"10.7153/DEA-2021-13-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many cases, groundwater flow in an unconfined aquifer can be simplified to a one-dimensional Sturm-Liouville model of the form: \\\\begin{equation*} x''(t)+\\\\lambda x(t)=h(t)+\\\\varepsilon f(x(t)),\\\\hspace{.1in}t\\\\in(0,\\\\pi) \\\\end{equation*} subject to non-local boundary conditions \\\\begin{equation*} x(0)=h_1+\\\\varepsilon\\\\eta_1(x)\\\\text{ and } x(\\\\pi)=h_2+\\\\varepsilon\\\\eta_2(x). \\\\end{equation*} In this paper, we study the existence of solutions to the above Sturm-Liouville problem under the assumption that $\\\\varepsilon$ is a small parameter. Our method will be analytical, utilizing the implicit function theorem and its generalizations.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2021-13-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2021-13-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
摘要
在许多情况下,无承压含水层中的地下水流动可以简化为一维Sturm-Liouville模型,其形式为:\begin{equation*} x''(t)+\lambda x(t)=h(t)+\varepsilon f(x(t)),\hspace{.1in}t\in(0,\pi) \end{equation*}在非局部边界条件下\begin{equation*} x(0)=h_1+\varepsilon\eta_1(x)\text{ and } x(\pi)=h_2+\varepsilon\eta_2(x). \end{equation*}。本文在$\varepsilon$为小参数的假设下,研究上述Sturm-Liouville问题解的存在性。我们的方法是解析式的,利用隐函数定理及其推广。
Weakly nonlocal boundary value problems with application to geology
In many cases, groundwater flow in an unconfined aquifer can be simplified to a one-dimensional Sturm-Liouville model of the form: \begin{equation*} x''(t)+\lambda x(t)=h(t)+\varepsilon f(x(t)),\hspace{.1in}t\in(0,\pi) \end{equation*} subject to non-local boundary conditions \begin{equation*} x(0)=h_1+\varepsilon\eta_1(x)\text{ and } x(\pi)=h_2+\varepsilon\eta_2(x). \end{equation*} In this paper, we study the existence of solutions to the above Sturm-Liouville problem under the assumption that $\varepsilon$ is a small parameter. Our method will be analytical, utilizing the implicit function theorem and its generalizations.